

CAN & LIN Development Tools

Version 1.2

HW for Physical Bus Connection

PC SW Pre-Release Version for professional CAN & LIN Development

4 x HW (Trigger) Outputs to synchronize Bus Signals with external HW

CLDT1xx4 - series:CAN BusCLDTx1x4 - series:LIN BusCLDTxx14 - series:Single Wire CAN Bus (GM LAN)

Company Information :

JW Electronics Heiligenbergerstr. 130 D-88682 Salem

All information and technical data in this user manual can be changed without prior declarations. This user manual, even partly, must not be reproduced in any form without the written permission of the publisher.

All technical specification, figures & diagrams are subject of copyright protection.

© Copyright 2015, JW Electronics. Printed in Germany. All rights reserved.

1 Table of Contents

1	Tab	ble of Contents	
2	Rev	<i>v</i> ision	8
3	Wa	rranty & Software Pre-Release - Version	9
4	Ove	erview CLDT Series – Main Features	
	4.1	Object & Main Features	
	4.2	CLDT1xx4 – Series : High Speed CAN Bus Support	
	4.3	CLDTx1x4 – Series : LIN Bus Support	
	4.4	CLDTxx14 – Series : Single Wire CAN Bus Support	
5	Inst	allation Guide	
	5.1	Minimum Requirements	
	5.2	Supported Windows Operating Systems	
	5.3	Timing Requirements under Windows Operating Systems	
	5.4	VCP Driver Installation	
	5.4.	1 Important : Correct Setting for VCP Latency Timer	
	5.5	SW Installation	15
	5.5.	1 Installation under Windows Vista, Windows 7 or Windows 8	
	5.6	Quick Check	
	5.7	PC SW Upgrade	
	5.7.	1 Install a PC SW Upgrade	
	5.8	CLDT Box SW Upgrade	
	5.8.	1 CLDT Box SW Upgrade	
	5.8.	2 CLDT Box SW Upgrade : No Software installed on the CLDT Box	
6	CLE	OT Box : Hardware Description	20
	6.1	PC Connection	20
	6.2	SubD 9 Female Connector Pinout Description	20
	6.3	Bi – colored LED	
	6.4	CAN Bus Connection (CLDT1xx4 – Series)	
	6.5	LIN Bus Connection (CLDTx1x4 – Series)	22
	6.6	Single Wire CAN Bus Connection (CLDTxx14 – Series)	22
	6.7	HW (Trigger) Output Interface	23
	6.7.	1 Output Signal Monitoring	23
	6.7.	2 About CLDT Box HW Outputs and CAN Bus Connection	

7	Har	dwar	e Accessory Kits	25
	7.1	9 –	way Ribbon Cable for CLDT Box to ECU's CAN Bus Connection	25
	7.2	9 –	way SubD9 CLDT to CAN Bus Connector	26
	7.3	9 –	way SubD9 Ribbon Cable to Banana Plug Adapter	27
	7.4	CLE	OT Box (or Ribbon Cable) to LIN & SW CAN Banana Plug Adapter	28
	7.5	CLE	OT Box (or Ribbon Cable) to CAN Banana Plug Adapter	28
	7.6	CLE	OT Box (or Ribbon Cable) to 5 x Output Banana Plug Adapter	29
	7.7	OBI	OII male Connector to SubD9 male Connector	29
	7.8	OBI	OII male Connector to 2 x SubD9 male Connector	30
8	CLE	DT B	ox : Software Description CAN & Single Wire CAN	31
	8.1	Ove	erview – Main Features	31
	8.2	CLE	OT Box Connection	32
	8.3	Mai	n Window Overview	34
	8.4	Тоо	I Bar Description	35
	8.5	Mer	nu Description	36
	8.5.	1	File Menu	36
	8.5.	2	Restbus Menu	37
	8.5.	3	dll Menu	38
	8.5.	4	Trigger Menu	38
	8.5.	5	Comm Menu	38
	8.5.	6	Firmware Menu	38
	8.5.	7	Window Menu	39
	8.5.	8	Info Menu	39
	8.6	Info	rmation Window	40
	8.7	Can	n RX / TX Message Window	41
	8.8	Out	put Window	44
	8.8.	1	Simulation Window	46
	8.8.	2	Trace Window	47
	8.8.	3	Scroll Window	48
	8.8.	4	Data Base Window	49
	8.8.	5	Trigger Window	50
	8.9	Res	tbus Simulation RX & TX Windows	55
	8.9.	1	RX Windows	55
	8.9.	2	TX Windows	57

	8.9.	3	User Controls for RX & TX Windows	58
	8.9.	4	TX Configuration Window	73
8.	10	CA	N Message Format : Little Endian / Big Endian Support	75
9	Sco	pe F	unctionality	76
9.	1	Sco	pe Toolbar Description	78
9.	2	Sco	pe Menu Description	79
	9.2.	1	File Menu	79
	9.2.	2	Cursor Menu	79
	9.2.	3	View Menu	80
	9.2.	4	Display Menu	80
	9.2.	5	Settings Menu	81
	9.2.	6	Save Data Menu	81
9.	3	Use	e of Scope Mode	82
9.	4	Sta	rt / Stop Restbus Simulation in Scope Mode	83
9.	5	Ana	Iyzing Bus Signals when Restbus Simulation is stopped	84
	9.5.	1	Zooming Possibilities	84
	9.5.	2	Measuring Possibilities	85
	9.5.	3	Storing Possibilities	86
10 CAN			TX Automation with synchronization possibility between physical HW Outputs ar essages	
10	D.1	RX-	TX Automation : Functional principle	88
10).2	Cer	tral DLL export functions to create user specific RX/TX logic	89
10	0.3	DLL	export functions for Data Exchange with CLDT SW	90
10).4	Sup	ported C-Compilers for automated code generation	91
	10.4	l.1	Free LCC-Win32 Compiler	91
	10.4	1.2	Microsoft VC++ Compiler	91
	10.4	1.3	Borland C++ Builder	91
10	0.5	DLL	Control Panel	92
10	0.6	DLL	Create Panel	93
	10.6	6.1	Settings for LCC Compiler	94
10).7	DLL	Load Panel	95
11	Ρ	re-de	efined TX Sequences	96
11	1.1	.sec	q-file format description	97
	11.1	.1	ID Header	97

11.	1.2	TX Sequence Data	99
11.2	Use	e of TX Sequences	101
12 E	Exam	ple : Can Trace	102
13 E	Exam	ple : Can Restbus Simulation	104
13.1	Ste	p 1 : Load a new Project and choose the Baudrate	105
13.2	Ste	p 2 : Edit the CAN RX and CAN TX IDs	106
13.3	Ste	p 3 : Add one RX and two TX Windows each with 3 variables	107
13.4	Ste	p 4 : Add the Properties for each of the controls	109
13.5	Ste	p 5 : Start the Restbus Simulation	111
13.6	Ste	p 6 : Update RX Simulation Variables	111
13.7	Ste	p 7 : Update TX Simulation Variables	112
13.8	Ste	p 8 : Hardware Output Usage	113
13.9	Ste	p 9 : Use of TX Configurations when the Simulation is running	114
14 E	Exam	ple : Can Data Base Trace	116
15 E	Exam	ple : Trigger Output Usage	118
15.1	Ste	p 1 : Define the different Triggers in the Trigger Window	120
15.2	Ste	p 2 : Download the trigger configuration to the CLDT Box	122
15.3	Ste	p 3 : Activate the Trigger Mode and start the CAN Trace	123
15.4	Ste	p 4 : Monitor the Trigger Outputs with a monitoring tool	123
16 E	Exam	ple : RX / TX Automation with HW Output Synchronization	124
16.1	Use	e LCC-Win32 Compiler for dll restbus simulation	125
16.	1.1	Create a new dll project, compile it and load it with the CLDT SW	125
16.	1.2	Program the user logic for the restbus simulation	126
16.	1.3	Testing \example_16_1\	127
16.2	Use	e Microchip VC++ Compiler for dll restbus simulation	128
16.	2.1	Create an empty dll project with VC++ Compiler	128
16.	2.2	Create h-file & cpp-file with CLDT SW	129
16.	2.3	Add h-file and cpp-file to VC++ dll Project	129
16.	2.4	Compile and load dll with CLDT SW	130
16.	2.5	Program the user logic for the restbus simulation	130
16.	2.6	Testing \example_16_2\	131
16.3	Use	e Microchip VC++ Compiler to create an external dll Control Panel	132
16.	3.1	Simple way of data exchange with external application	132
16.	3.2	Testing \example_16_3\	133

8) Start the Restbus Simulation and use the user application to start / stop CAN Bus	
communication1	133
17 Example : TX Sequence Generation with Excel Makro 1	134
17.1 TX Sequence Header ID and TX Sequence Data1	134
18 CLDT Box : Software Description LIN Bus Support 1	135
19 Future Software Scope 1	136
19.1 CAN – LIN Gateway Functionality1	136
20 Technical Specification	137
20.1 ABSOLUTE MAXIMUM RATINGS 1	137
20.2 NORMAL OPERATION RATINGS 1	137
21 Change History 1	138
22 Environmental Aspects 1	139
22.1 Product End Of Life 1	139
23 EC Declaration Of Conformity 1	140

2 Revision

Version	Date	Comment
V1.0	28.09.2014	First Preliminary Release
V1.1	16.12.2014	Extended Value, Radio & Slide Controls available for restbus simulation
V1.2	10.03.2015	New Features : TX Sequence, Scope and RX-TX Automation

3 Warranty & Software Pre-Release - Version

Note that the current level of maturity for the CAN Box Software and the PC Software is in Pre-Release State (Test Version State).

All features described in this user manual are tested and are presumed to work correctly. However, not all features are tested under all thinkable test conditions and therefore some unexpected results may not be excluded completely.

JW Electronics would appreciate to get some customer feedback if any of the functions do not work as specified in this user manual or to get suggestions to improve CLDT- Box and / or software features.

All Pre-Release – Users have full upgrade privilege for future software releases.

A Flash Bootloader is integrated in the CAN Box Software, thereby CAN Box Software upgrades are feasible by the customer himself.

However, if the Flash Bootloader must be upgraded in order to use some new software features the CLDT Box must be sent back to JW Electronics. The new Flash Bootloader can only be programmed in the JWE labs.

Only shipment costs are at customer's own expense, the Flash Bootloader upgrade is for free.

JW Electronics takes no liability for correct user manual content or damages which follow from the use of this user manual or the use of the Pre-Release software versions.

JW Electronics reserves the right to change

- the contents of the user manual
- the CLDT Box software
- the PC software

without prior declaration at any time.

4 **Overview CLDT Series – Main Features**

4.1 Object & Main Features

As the CAN Bus and LIN Bus are more and more subject of development projects outside the automotive industries - and even become part of non-professional engineering - the need for CAN & LIN development tools will furthermore increase in the future.

The basic motivation for developping the CLDTxxxx – CAN & LIN Series was to create a low cost development tool, but, at the same time, not resign on the main functionalities which are essential for a professional HW and SW development.

Therefore features such as restbus simulation, dbc support, scope functionality, RX/TX Automation and easy synchronization between CAN Bus Data and external hardware were inherent parts of the design phase for these tools.

CLDT Box main features

- ✓ professional low cost HS CAN, LIN & Single Wire CAN Bus Development Tool
- ✓ CAN Bus Baudrates up to 1 MBit/s
- Single Wire CAN Support for Normal Operating Mode with Baudrates up to 40kBit/s
- ✓ self-explanatory & intuitive SW Tool and therefore very easy to handle
- ✓ Restbus Simulation Tool
- ✓ Scope Functionality to monitor up to 8 CAN signals in real time
- RX/TX Automation in dll Mode with synchronization possibility between CAN Messages and 4 physical digital HW Outputs
- ✓ TX Sequence Mode to apply pre-defined CAN Sequences
- ✓ Little Endian & Big Endian data format support
- ✓ dbc data base support
- ✓ Bus Trace with different displaying modes
- ✓ save bus data
- ✓ RX bus data synchronization with 4 x HW Trigger Outputs
- ✓ TX bus data synchronization with 4 x HW Signal Outputs
- ✓ future PC SW upgrades included
- ✓ integrated Flash Bootloader for CAN Box upgrades

- ✓ future CAN Box SW upgrades included (exception see chapter <u>'Warranty'</u>)
- ✓ power supply by PC USB Port
- ✓ HS CAN interface compatible to other CAN Tools on the market

4.2 CLDT1xx4 – Series : High Speed CAN Bus Support

Version	HS CAN	LIN	SW CAN	HW Output	Availability
CLDT1004	1	0	0	4	11 / 2014
CLDT1104	1	1	0	4	likely Q2/2015

4.3 CLDTx1x4 – Series : LIN Bus Support

Version	HS CAN	LIN	SW CAN	HW Output	Availability
CLDT1104	1	1	0	4	likely Q2/2015
CLDT0114	0	1	1	4	likely Q2/2015

4.4 CLDTxx14 – Series : Single Wire CAN Bus Support

Version	HS CAN	LIN	SW CAN	HW Output	Availability
CLDT0014	0	0	1	4	02 / 2015
CLDT0114	0	1	1	4	likely Q2/2015

Important Note : Single Wire CAN Bus is only supported for Normal Operating Mode with Baudrates up to 40 kBit/s.

High Speed Programming Mode (e.g. 83 kBit/s/+12V) is not supported by the CLDT Box.

5 Installation Guide

5.1 Minimum Requirements

- > CPU : Pentium 4 or higher
- RAM : 1GB or more

5.2 Supported Windows Operating Systems

- Windows XP SP3 : PC SW V1.0 is tested with Windows XP. For future SW updates no testing under Windows XP is planned
- Windows Vista SP1 : supported
- Windows 7 32bit : supported
- Windows 7 64 bit : supported
- Windows 8 32 bit : supported
- ➢ Windows 8 64 bit : supported

5.3 Timing Requirements under Windows Operating Systems

Note that most desktop PCs block CPU execution for specific time slots due to internal power management requirements. This has impact on the accuracy of timing generations in Windows operating systems. In applications with increased timing requirements these power management adjustments should be deactivated.

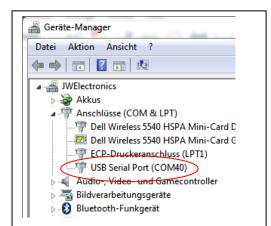
5.4 VCP Driver Installation

The USB Connection between PC and CLDT Box is realized via a virtual COM port device designed by Future Technology Devices International Ltd. (FTDI). The setup executable to install the VCP driver is located on the setup disc in the directory :driver/DriverSetup/CDM v2.10.00 WHQL Certified.exe.

The latest driver version may also be downloaded directly from FTDI's homepage <u>http://www.ftdichip.com/Drivers/VCP.htm</u>.

The driver installation guides are available on the setup disc in the directory :driver/InstallationGuides/.

The latest version of documentation is also available on FTDI's homepage http://www.ftdichip.com/Support/Documents/InstallGuides.htm


Use the setup executable and follow the instructions in the Installation Guides.

Note : For Windows 7 & Windows 8 operating systems the setup-exe must be executed with administrator rights. Therefore use a right mouse click on the setup-exe and choose 'execute as administrator'

5.4.1 Important : Correct Setting for VCP Latency Timer

The VCP latency timer is a form of time-out mechanism for the read buffer of FTDI devices. Its default value is 16ms.

For correct CLDT SW functionality under different CAN bus charge scenarios this value should be changed to 5ms. In applications with increased timing requirements the time-out should even be set to a value of 2ms or 1ms.

Change VCP Latency Timer in Windows Device Manager :

After correct VCP Driver Installation connect the CLDT Box to a USB Port and wait until the green LED appears on the box. Then open the Device Manager, right-click the dedicated COM Port and then click Properties. On the Port Settings Tab click 'Advanced Settings' and change the Latency time-out to a value of 5ms or lower.

Allgemein	Anschlusseinstellungen Treiber Details
	Bits pro Sekunde: 9600 💌
	Datenbits: 8
	Parität: Keine 👻
	Stoppbits: 1
	Russsteuerung: Keine
	ErweitertWiederherstellen
	OK Abbrechen

eiterte Einstellungen für COM40	? ×
COM-Anschlussnummer: COM40	• OK
USB Packetgrößen Reduzieren Sie die Werte, um Performance-Probleme bei gerin Erhöhen Sie die Werte für eine höhere Geschwindigkeit. Empfangen (Bytes): Senden (Bytes): 4096 •	gen Baudraten zu beheben. Standard
BM Einstellungen Reduzieren Sie die Werte, um Kommunikationsprobleme zu verringern. Wartezeit (ms):	Allgemeine Optionen PlugPlay für serielle Schnittstelle Serieller Drucker Anoprechen der kommunikation, wenn das userat even noe in unvörnergesenner Entrernung des
Timeouts Minimale Anzahle der Lese-Timeouts (ms): (ms): (ms): 0	Constant □ Beim Schließen der Verbindung RTS aktiv setzen □ Abschatzen der Constant □ Brable Selective Suspend □ Selective Suspend Idle Timeout (nsec): 5

5.5 SW Installation

First install the VCP USB driver before starting the installation of the CLDT-Box PC Software (refer to the chapter <u>VCP Driver Installation</u>)

After the VCP USB driver has been successfully installed start the setup.exe in the main directory of the setup disc and follow the instructions. The installer will guide you through the installation.

Before installing the software from the CD check, if a more recent version of the installer is available at

http://www.jwe-electronics.com/mp1/downloads.php

5.5.1 Installation under Windows Vista, Windows 7 or Windows 8

- Note : For Windows Vista, Windows 7 or Windows 8 operating systems the setup-exe must be executed with administrator rights. Therefore use a right mouse click on the setup-exe and choose 'execute as administrator'
- **Note :** For Windows Vista, Windows 7 and Windows 8 operating systems the CLDT software **should not be installed** in the folders
 - C:\Program Files\
 - C:\Program Files (x86)\

The CLDT software must have write-access to some subfolders of its installation folder. Therefore, if the user is not logged in as administrator and the software is installed in the 'Program Files' folder, the software might not work correctly.

5.6 Quick Check

After successful VCP Driver and CLDT-Box Software Installation connect the CLDT Box to the PC and wait until the PC has automatically detected and installed the new Hardware. Depending on your operating system this may take up to 2 minutes.

When the green LED on the CLDT Box is lighting in continuous mode the new Hardware has been installed and is working correctly.

5.7 PC SW Upgrade

During Beta-Testing phase bugfixing, as well as the implementation of new software features, is done periodically.

Therefore new PC software releases can be downloaded at

http://www.jwe-electronics.com/mp1/downloads.php

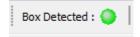
5.7.1 Install a PC SW Upgrade

- 1) Download the new CLDT.exe file
- 2) Copy the new CLDT.exe in the installation folder \JWE\
- 3) Delete the can_oszi.ini in the folder
- \JWE\ini\can_oszi.ini

4) Start the new CLDT.exe

5.8 CLDT Box SW Upgrade

During Beta-Testing phase it should be cyclically checked, if a new CLDT Box Software is available at


http://www.jwe-electronics.com/mp1/downloads.php

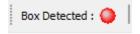
During Beta-Testing phase bugfixing, as well as the implementation of new software features, is done periodically.

- 1) Download the new CLDT-Box_Vx_y.cos file
- 2) Copy the new .cos file in the folder \JWE\download\
- 3) connect the CLDT-Box to the PC
- 4) start the CLDT.exe
- 5) follow the download procedure as described in the next chapters

5.8.1 CLDT Box SW Upgrade

- Start the CLDT.exe

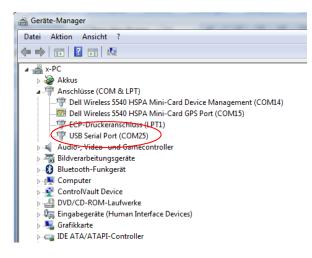
the green LED 'Box detected' should appear

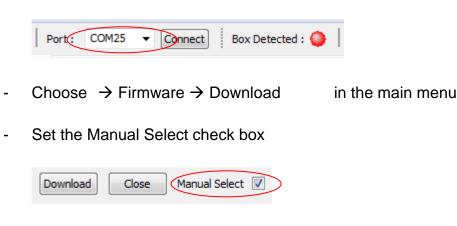

- Choose \rightarrow Firmware \rightarrow Download in the main menu
- Click the 'download' button and choose the .cos-file

pda	te Firmware	23
Fir	mware update successful	
Sta	art Reprogramming now	
Fir	mware File OK	
Do	wnload Close Ma	anual Select 🔲

5.8.2 CLDT Box SW Upgrade : No Software installed on the CLDT Box

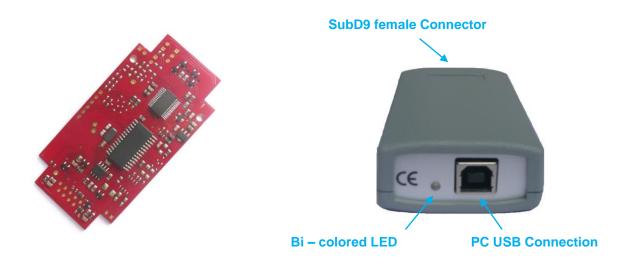
If the CLDT Box is connected to the PC and the **green LED on the CLDT-Box is blinking**, no valid software version is loaded on the Box.


- Start the CLDT.exe


the red LED 'Box not detected' appears

 If the connection is not established, the correct virtual COM port, that is dedicated to the CLDT-Box must be chosen manually in the Windows Device Manager

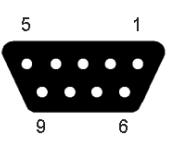
 \rightarrow open the device manager and chose the dedicated COM port as shown below :



- Set the correct Com Port in the toolbar :

- Click the 'download' – button and choose the .cos-file

6 CLDT Box : Hardware Description

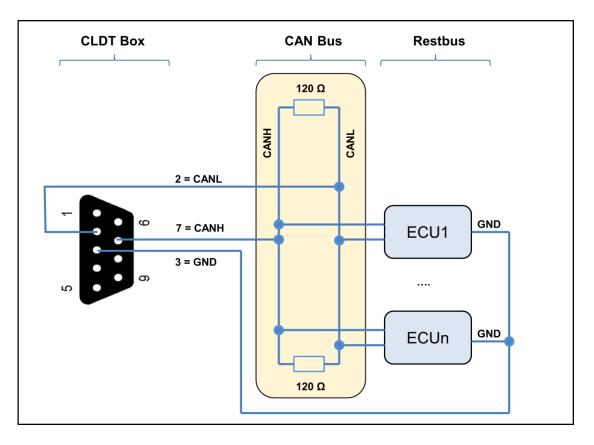

6.1 PC Connection

The CLDT Box is connected to the PC via a USB 2.0 type A to type B – Cable.

+5V supply voltage is provided from PC USB port with a maximum supply current of 200 mA.

6.2 SubD 9 Female Connector Pinout Description

HW (Trigger) Outputs and Bus Connections are realized via a SubD9 female connector with the following pinout :

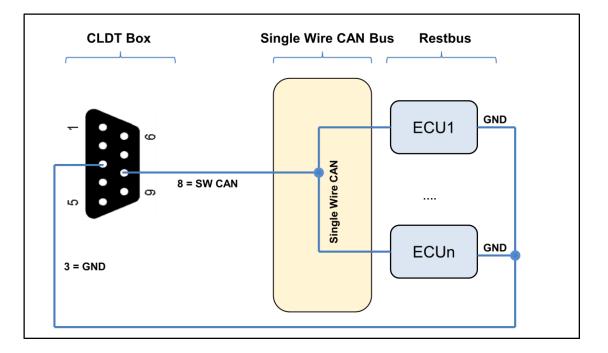

	1:	(Trigger) Output 2	
	2 :	HS CANL	(CLDT1xxx series)
	3 :	GND	
	4 :	LIN	(CLDTx1xx series)
7	5:	(Trigger) Output 3	
	6 :	(Trigger) Output 1	
	7:	HS CANH	(CLDT1xxx series)
	8:	Single Wire CAN	(CLDTxx1x series)
	9:	(Trigger) Output 4	

6.3 Bi – colored LED

The following table describes the lighting conditions of the bi colored LED (orange / green) :

Color	Mode	Description
green	continuous	CLDT Box ready for use
green	fast flashing	No SW loaded : CLDT Box must be reprogrammed
green	slow flashing	SW Programming ongoing
orange	slow flashing	Measurement ongoing
orange	continuous	Measurement pause

6.4 CAN Bus Connection (CLDT1xx4 – Series)

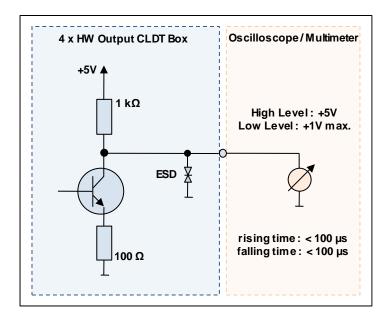


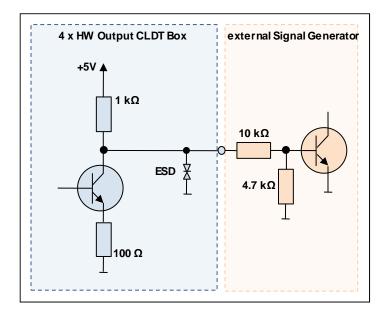
- > Connection lines between CLDT Box and CAN Bus as short as possible
- > 120 Ω terminating resistors to avoid reflections at cable ends

6.5 LIN Bus Connection (CLDTx1x4 – Series)

Chapter under Revision

6.6 Single Wire CAN Bus Connection (CLDTxx14 – Series)

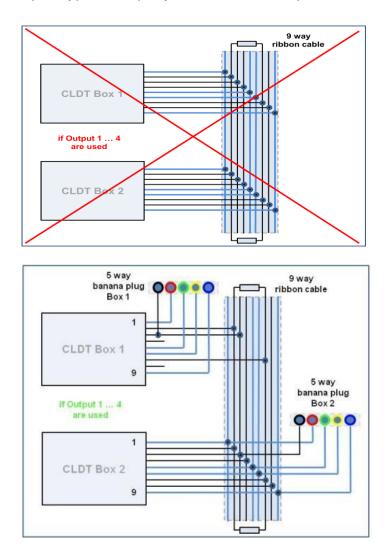

Connection line length less critical due to lower Baudrate (up to 40 kBit/s) for Single Wire CAN Bus


Impor	tant Note :	Single Wire CAN Bus is only supported for Normal Operating Mode with Baudrates up to 40 kBit/s.	
		High Speed Programming Mode (e.g. 83 kBit/s/+12V) is not supported by the CLDT Box.	

6.7 HW (Trigger) Output Interface

6.7.1 Output Signal Monitoring

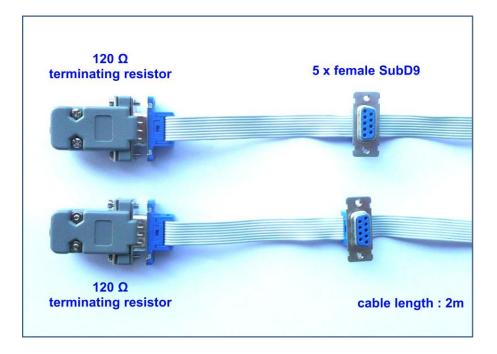
Recommended connection method for HW Output Signal Monitoring by using voltage monitoring instruments (e.g. multimeter or oscilloscope) or external signal generators :


6.7.2 About CLDT Box HW Outputs and CAN Bus Connection

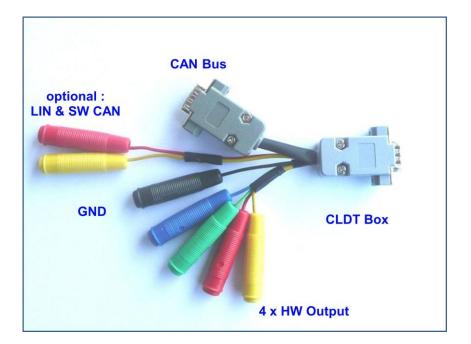
During development phases the real CAN Bus is usually replaced by using a 9-way ribbon cable as physical bus and by adding 2 terminating resistors at the end of lines (see chapter <u>'Hardware Accessory Kits'</u>).

If the CLDT Box is directly connected to all 9 pins of the 9-way ribbon cable via a 9 – way male/male adapter please consider, that the 4 HW Outputs may be connected to other signals.

If, for example, 2 CLDT Boxes are connected together at the same physical bus respectively with a 9 – way adapter, or if the ribbon cable lines 1, 5, 6 or 9 are connected to other signals from other ECU's, this could lead to unpredictable or casual results concerning the voltage levels on these lines.

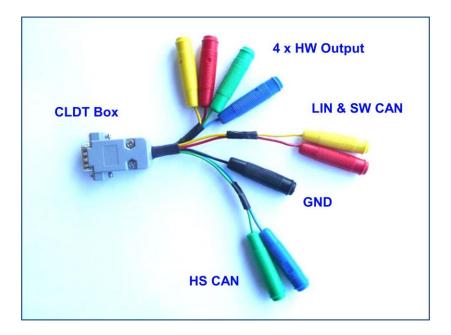

In this case the CAN Bus Connection should be done (at least for one of the two CLDT Boxes) via an adapter type exemplary shown in the chapter <u>'Hardware Accessory Kits'</u>

7 Hardware Accessory Kits


7.1 9 – way Ribbon Cable for CLDT Box to ECU's CAN Bus Connection

- > 5 x SubD9 female connector mounted on 2 meter ribbon cable
- > 2 x 120 Ω terminating resistor mounted in a SubD9 male & female plugs
- > 1 x SubD9 female connector to plug on terminating resistor 1
- > 1 x SubD9 male connector to plug on terminating resistor 2
- Cable extension possible due to SubD9 male / female combination at the end of lines
- Terminating resistors between lines 2 & 7

7.2 9 – way SubD9 CLDT to CAN Bus Connector


- > 1 x SubD9 male connector CLDT Box Side
- > 1 x SubD9 male connector Can Bus Side
- > 5 x or 7 x banana female plugs CLDT Box Side

SubD9-1	Banana Plug Color	SubD9-2	Signal Description	Functional Group
3	black		GND	GND
3	-	3	GND	
2 7	-	2	HS CANL	HS CAN
7	-	7	HS CANH	
4	red (optional)		LIN	LIN / SW CAN
8	yellow (optional)		Single Wire CAN	LIN / SVV CAN
1	red		(Trigger) Output 2	
5	green		(Trigger) Output 3	Output
6 9	yellow		(Trigger) Output 1	Calput
9	blue		(Trigger) Output 4	

7.3 9 – way SubD9 Ribbon Cable to Banana Plug Adapter

- > 1 x SubD9 male connector Can Bus Side
- > 9 x banana female plugs CLDT Box Side

SubD 9 Pin Nbr	Banana Plug Color	Signal Description	Functional Group
3	black	GND	GND
2	blue	HS CANL	HS CAN
7	green	HS CANH	IIS CAN
4	red	LIN	LIN / SW CAN
8	yellow	Single Wire CAN	LIN / SW CAN
1	red	(Trigger) Output 2	
5	green	(Trigger) Output 3	Output
6 9	yellow	(Trigger) Output 1	Output
9	blue	(Trigger) Output 4	

7.4 CLDT Box (or Ribbon Cable) to LIN & SW CAN Banana Plug Adapter

See picture in *<u>chapter 7.3</u>* : with only 3 banana female plugs.

Including :

- > 1 x SubD9 male connector Can Bus Side
- > 3 x banana female plugs (LIN, SW CAN, GND)

SubD 9 Pin Nbr	Banana Plug Color	Signal Description	Functional Group
3	black	GND	GND
4	red	LIN	LIN / SW CAN
8	yellow	Single Wire CAN	LIN / SW CAN

7.5 CLDT Box (or Ribbon Cable) to CAN Banana Plug Adapter

See picture in *chapter 7.3* : with only 3 banana female plugs

- > 1 x SubD9 male connector Can Bus Side
- > 3 x banana female plugs (CANH, CANL, GND)

SubD 9 Pin Nbr	Banana Plug Color	Signal Description	Functional Group
3	black	GND	GND
2	blue	HS CANL	HS CAN
7	green	HS CANH	H3 CAN

7.6 CLDT Box (or Ribbon Cable) to 5 x Output Banana Plug Adapter

See picture in *<u>chapter 7.3</u>* : with only 5 banana female plugs

Including :

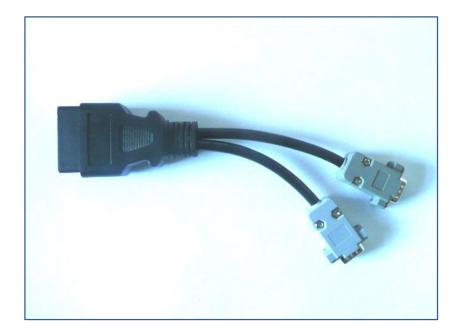
- > 1 x SubD9 male connector Can Bus Side
- ➢ 5 x banana female plugs (4 x Output, 1 x GND)

SubD 9 Pin Nbr	Banana Plug Color	Signal Description	Functional Group
3	black	GND	GND
1	red	(Trigger) Output 2	
5	green	(Trigger) Output 3	Output
6	yellow	(Trigger) Output 1	Output
9	blue	(Trigger) Output 4	

- > 1 x SubD9 male connector Can Bus Side
- 5 x banana female plugs (4 x Output, 1 x GND)

7.7 OBDII male Connector to SubD9 male Connector

See picture in *chapter 7.8* : with only 1 SubD 9 male connector


- > 1 x OBDII Diagnosis male Connector Car Side
- > 1 x SubD9 male connector CLDT Box Side
- > Pinning CLDT Box Side and OBDII Side on customers request

7.8 OBDII male Connector to 2 x SubD9 male Connector

Including :

- > 1 x OBDII Diagnosis male Connector Car Side
- > 2 x SubD9 male connectors CLDT Box Side

> Pinning CLDT Box Side and OBDII Side on customers request

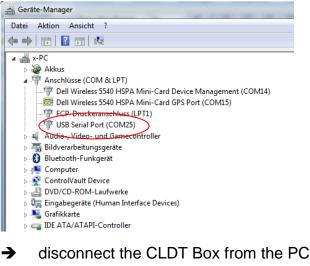
8 CLDT Box : Software Description CAN & Single Wire CAN

8.1 Overview – Main Features

- CAN Bus Baudrates up to 1 MBit/s
- Single Wire CAN Bus Baudrates up to 40 kBit/s
- CAN Data RX Trace Window
- CAN Data RX Scroll Window
- Restbus Simulation Window with dedicated and configurable RX- and TX Simulation Windows
- Scope Window to monitor up to 8 CAN Signals in real time
- RX / TX Automation in dll Mode with the synchronization possibility between CAN Bus Messages and 4 digital HW Outputs
- > TX Sequence mode to load pre defined CAN Sequences
- Little Endian & Big Endian Support in Simulation Mode and in Trace Mode
- Save CAN RX & TX Trace Data
- CAN Data Base Support with RX Trace in Tree Data Structure
- In Trigger Mode : 4 x configurable HW Trigger Outputs to trigger on CAN Messages or CAN Message Contents
- In non-Trigger Mode : 4 x configurable HW Outputs to easily synchronize CAN TX messages with digital Signal Outputs
- Free Firmware upgrade via internal Flash Bootloader

CLDT Box Connection 8.2

If the CLDT Box is connected via the USB cable to the PC and the green LED on the Box appears, the connection between PC Software and CLDT Box is done automatically at the program start. The software detects the CLDT Box and indicates the virtual COM port that is dedicated to the Box.



If the CLDT Box is not detected automatically or if the connection was lost due to any reason the PC LED state indicates 'not connected state' with a red color :

Port :	COM22	•	Connect	Box Detected :	۵.	l
--------	-------	---	---------	----------------	----	---

In this case, if the CLDT Box is connected and the green LED on the Box is lighting in continuous mode, a simple click on the 'Connect Button' re-initiates a new connection - process. The connection will be done automatically and the software indicates the new virtual COM port.

If the connection is not established, the correct virtual COM port must be chosen manually in the Windows Device Manager :

- reconnect the CLDT Box to the PC →
- wait until the green LED on the CLDT Box is lighting in continuous mode →
- → open Windows Device Manager and verify the dedicated COM port
- → choose the right COM port in the Com-Port combo box and click the 'Connect Button' again
- → the CLDT Box should be detected by the software now

If the Box is connected to the PC and no green LED appears on the Box, the drivers for the CLDT Box are not correctly installed. In this case please refer to the chapters <u>*VCP Driver Installation*</u> and <u>*Quick Check*</u>.

8.3 Main Window Overview

After starting the PC software the Applications Main Window will appear.

Simulation	Trace Wdw	Scroll Wd	w	Data Base	Trigger			RX Msg TX Msg
Message ID	Bx/Tx Time [s]	dt [ms]	Outp	et Windo	Content	Count	Remarks	Add Update ext rb ID DL Cyde Auto Cyde DefFFFFFF 0 • 0 • 0 P DefFFFFFF 0 • 0 • 0 Remove CAN Message Window
		I	nforma	ition Win	dow			^

The Main Window is divided into five functional blocks. The detailed description of the functional blocks is given in the following chapters :

- Main Menu
- > Toolbar
- Output Window
- Information Window
- CAN Message Window

8.4 Tool Bar Description

	🔲 🙆 🧼 🔚 📰 Trace Mode Bus Charge : 0 % CAN Bus Baudrate : 500 kBit/s 🗸
	Start Trace or Start Simulation Button Pause Button Stop Trace or Stop Simulation Button Trace Indicator : green = Simulation running yellow = Pause red = Simulation stopped
📄 🖻	Save Trace Button
	If the Save Trace Check Box is activated a file to save the CAN Trace data must be chosen at the beginning of a CAN Trace or Simulation.
	Download Trigger Button and Trigger Functionality Activation Check Box
	Download Trigger Conditions to the CLDT Box with the Download Trigger Button. If the Check Box is activated, the next CAN Trace or CAN Simulation is starting in Trigger Mode. Therefore the 4 HW Outputs of the CLDT Box are configured in Trigger Mode.
\triangleright	'Current Project' Text Field : Read only
	Indicates the currently loaded project
\blacktriangleright	Bus Charge Text Field : Read only
	If a Simulation or CAN Trace is running the current busload is monitored
	CAN Bus Baudrate List Field

CAN Bus Baudrate List Field

Baudrate of the current project. Possible Baudrates :

1 MBaud / N N = 1, 2, 3 ...

8.5 Menu Description

File Restbus dll Trigger Comm Window Firmware Info

The Menu Items are described in detail in the following chapters :

8.5.1 File Menu

Exit Import data base Import .csv Export db to .csv Close data base Recent Projects

Menu Item	Description
Exit	Close Program
Import data base	Import dbc data base for RX Trace in Data Base Window
Import .csv	not implemented yet
Export db to .csv	not implemented yet
Close data base	Close current dbc data base
Recent Projects	Shortcut to the last five used projects

8.5.2 Restbus Menu

New ProjectLoad ProjectSave ProjectSave Project asClose ProjectLoad RX TableLoad TX TableTx ConfigurationsTX SequenceStart SimulationStop SimulationSave DataUpdate Project

Scope Active

Menu Item	Description				
New Project	opens a dialog to choose a new project				
Load Project	opens a dialog to choose an existing project				
Save Project saves the current project configuration					
Save Project as	not implemented yet				
Close Project	closes the current project				
Load RX Table	loads a new or an existing RX Simulation Window				
Load TX Table	loads a new or an existing TX Simulation Window				
TX Configurations	loads the TX Configurations Dialog				
TX Sequence	loads a pre-defined TX Sequence				
Start Simulation	same as Toolbar Button 'Start Simulation'				
Stop Simulation	same as Toolbar Button 'Stop Simulation'				
Save Data	not implemented yet				
Update Project	saves all modifications to the current project				
Scope Active	activates & shows the Scope Window				

8.5.3 dll Menu

create dll project load dll

load DII Control Panel

Menu Item	Description
create dll project	creates a dll project from the currently loaded project
load dll	loads a dll for RX/TX Automation Mode
load Dll Control Panel	adds a dll control panel to the current project

8.5.4 Trigger Menu

Load Configuration Save Configuration

Download

Menu Item	Description			
Load Configuration	Load an Existing Trigger Configuration for the 8 Triggers			
Save Configuration	Save the current Trigger Configuration			
Download	Download the current Trigger Configuration to CLDT Box			

8.5.5 Comm Menu

Load to CAN Box

Reset CAN Box

Menu Item	Description		
Load to CAN Box	not implemented yet		
Reset CAN Box	Resets the CLDT Box SW		

8.5.6 Firmware Menu

Download

Menu Item	Description
Download	opens the dialog to upgrade the CLDT Box Software Version

 Resize Main Window

 Toolbar

 Output

 Can Messages

 Info

 Hide All Sim Wnd

 Show All Sim Wnd

 Sim Wnd to Main Screen

 Scope

DLL

Menu Item	Description
Resize Main Window	Resets the Main Window Conmtent to show all Windows in the basic configuration
Toolbar	Hides / Shows the Toolbar
Output	Hides / Shows the Output Window
Can Messages	Hides / Shows the CAN Message Window
Info	Hides / Shows the Information Window
Hide All Sim Wnd	Hides all opened RX & TX Simulation Windows
Show All Sim Wnd	Shows all opened RX & TX Simulation Windows
Sim Wnd to Main Screen	Cascades all opened RX & TX Simulation Window on the main screen if more than one screen is used
Scope	Shows the Scope Window if scope function is active
DLL	Shows the DLL Window if dll function is active

8.5.8 Info Menu

Version

Menu Item	Description	
Version	opens a dialog which shows informations about PC and CLDT Box SW & HW Versions	

8.6 Information Window

After starting the PC software the Information Window is situated at the bottom of the Application Window.

#Warning : CAN Box not detected

In the Information Window useful advices or details are indicated, especially if some kind of (logical) problems during the applications program flow appear.

Tip :	To enlarge the screen size for other
	windows (e.g. Output Window) the
	Information Window can be hidden by
	the Menu Item
	\rightarrow Window \rightarrow Info

8.7 Can RX / TX Message Window

After starting the PC software the CAN Message Window is situated at the right side of the Application Window.

In the CAN RX & TX Message Windows the CAN IDs for the CAN Restbus Simulation are defined.

Up to 25 RX and 25 TX CAN IDs can be defined and be monitored in the Restbus Simulation Mode.

RX Msg	TX Msg		
Add 0x1000		late	Add
extrtr ID Da	DL Cycle ta Length	Auto	ext rtr II
🗌 🔲 0x123	1 🔻 100		🗌 🔲 🛛 🗠 🖂
🗌 🔲 🛛 🗠 🖂	2 🔻 0		🔲 🔲 🗰 🖂
🗌 🔲 0x125	3 🔻 20		🗆 🔲 🗰 🖂
🗌 🔲 🛛 🗠 🗠	4 🕶 40		🗆 🔲 🗰 🗠
🗌 🔲 🛛 🗠 🗠	5 🔻 25		🗸 🔲 🛛 🖂
🗸 🔲 0x1000ABCD	6 🕶 0		🗸 🔲 🛙 🖾
✓ ■ 0x1000ABCE	7 🔻 200		🗸 🔲 🛛 🖂
✓ ■ 0x1000ABCF	8 🔻 200		
	Cycle Time	in ms	Remove
Remove 0x234			
ID Ren	nover		

CAN TX Message Window

CAN RX Message Window

TX Msg sg 0x12001236 Update DL Cycle 1 • 20 2 • 50 3 👻 100 4 👻 100 5 100 01234 -01235 6 20 Ŧ 01236 7 30 •

Explanation of the 'Auto'-Check Box : see chapter

'Example : CAN Restbus Simulation'

www.jwe-electronics.com

Procedure to define CAN RX & TX messages for Restbus Simulation

Open a new or existing project	(→Restbus – Menu)
Choose the correct Baudrate for the project	(→ Toolbar)

- edit CAN Messages in hex-format in the ID Editor with preceding 0x...
 - standard CAN messages in 5 character format (e.g. 0x012)
 - extended CAN Messages in 10 character format (e.g. 0x001234AB)
- remove CAN messages in hex-format in the ID Remover with preceding 0x...
- define Data Length & Cycle Time for each CAN Message
 - Cycle Time is mandatory for CAN TX Message
 - Cycle Time is optional for CAN RX Messages

Cycle Time Description				
0 manual triggered CAN Message				
> 0 cyclic CAN Message in [ms]				
Data Length	Description			
0 8 possible Data Length : 0 byte 8 byte				

- finally click the 'Update Button' to save all changes to the project files
 - Cyclic TX messages appear with green TX Buttons, triggered TX messages appear with blue TX Buttons
- the project is updated and the defined CAN RX & TX Messages appear now, as shown below, in the Output – Simulation Window

					-		
Rx Message	Time [s]	dt [ms]	ext/std	DL	Content	Remarks	
)x223	0	0	std	1	00		
)x224	0	0	std	2	00 00		
)x225	0	0	std	3	00 00 00		
)x226	0	0	std	4	00 00 00 00		
x12001234	0	0	ext	5	00 00 00 00 00		
x12001235	0	0	ext	6	00 00 00 00 00 00		
x12001236	0	0	ext	7	00 00 00 00 00 00 00		
•			"				•
Tx Message	Time [s]	dt [ms]	ext/std	DL	Content	Remarks	
)x123	0	0	std	1	00		
0x124	0	0	std	2	00 00		
x125	0	0	std	3	00 00 00		
)x126	0	0	std	4	00 00 00 00		
)x127	0	0	std	5	00 00 00 00 00		
x1000ABCD	0	0	ext	6	00 00 00 00 00 00		
x1000ABCE	0	0	ext	7	00 00 00 00 00 00 00		
x1000ABCF	0	0	ext	0	00 00 00 00 00 00 00 00		

Output Simulation Window

Tip : Each time the CAN Message IDs or the Baudrate Setting for a project are modified, the **project must be updated** via the 'Update Button' before starting a new restbus simulation

8.8 Output Window

The Output Window offers two main functional groups for user interaction :

- Display CAN Messages in different formats
- > Define Trigger Conditions for the use in Trigger Mode

A) CAN Message Display

If a CAN Trace or CAN Simulation is running, the CAN Bus Data is shown in the Output Window. The CAN Data may be displayed in 4 different ways :

1) Simulation Window

Only the CAN Messages that are defined in the CAN RX & CAN TX Message Windows are shown (in real time)

2) Trace Window

All CAN Messages detected on the Bus are shown (in real time)

3) Scroll Window

All CAN Bus Messages detected on the Bus are shown in a real-time scrolling mode.

4) Data Base Window

If a CAN Data Base is loaded, the CAN Messages that are defined in the dbc-file are shown in a Message – Signal – Tree Structure (in real time)

B) Define Trigger Conditions

Trigger Window

The user has the possibility to define up to 8 different trigger conditions that can be used to trigger the 4 HW Outputs when certain CAN messages or CAN message contents appear on the bus

- 4 x HW Trigger Output on CAN Messages or CAN Message Contents
- 4 x Virtual Triggers to create up to 8 different trigger conditions
- combine trigger conditions with logical combinations (AND, OR ...)
- typical Trigger Delay < 100 µs

8.8.1 Simulation Window

If a Restbus Simulation is ongoing the CAN Messages that are defined in the CAN Message RX & TX Windows are displayed in real time in the Simulation Window with the following message content :

- CAN Message ID
- > absolute time in [s] of last message appearance on the bus
- > relative time in [ms] between the last two message appearances on the bus
- > information if message is in standard or extended format
- Message Data Length
- Message content in hex-format
- remarks edit field for additional user information

Simulation	Trac	e Wdw	Scroll Wd	w	Data Base Trigger		
Rx Message	Time [s]	dt [ms]	ext/std	DL	Content	Remarks	
0x223	58.102	20	std	1	f0		
0x224	58.077	50	std	2	00 00		
0x225	58.032	100	std	3	00 b8 0e		=
0x226	58.037	100	std	4	00 00 00 00		
0x12001234	58.042	100	ext	5	00 00 76 41 00		
0x12001235	58.107	20	ext	6	00 00 00 00 00 00		
0x12001236	58.102	30	ext	7	00 00 00 00 30 7e 0b		
•			11				-
Tx Message	Time [s]	dt [ms]	ext/std	DL	Content	Remarks	
0x123	58.101	100	std	1	00	Kemarks	
0x123	45.807	8817	std	2	00 00		
0x124	58.111	20	std	3	00 a5 1c		E
0x125	58.096	40	std	4	00 00 00 00		
0x120	58.121	24	std	5	00 00 00 00 00		
0x1000ABCD	46.414	5632	ext	6	00 00 00 46 a4 00		
0x1000ABCE	58.032	200	ext	7	00 00 00 00 00 00 00		
0x1000ABCF	58.036	200	ext	0	00 00 00 00 00 00 00 00		

8.8.2 Trace Window

If a Restbus Simulation or a CAN Trace is ongoing all CAN Messages received or transmitted by the CLDT Box are displayed in real time in the Trace Window with the following message content :

- CAN Message ID
- Information if message is received or transmitted by the CLDT Box
- absolute time in [s] of last message appearance on the bus
- > relative time in [ms] between the last two message appearances on the bus
- information if message is in standard or extended format
- information if message is a RTR (Remote Transmission Request) or Data
- Message Data Length
- Message content in hex-format
- Number of total messages received with this CAN ID
- > remarks edit field for additional user information

0x124 0x125 0x126	Rx/Tx TX TX TX TX	Time [s] 103.301 45.807	dt [ms]	ext/std	DTD				
0x125 0x126	TX TX		100		RTR	DL	Content	Count	Remarks
0x126	ТХ	45.807	100	std	d	1	00	1034	
0x125 0x126			8817	std	d	2	00 00	2	
	TV	103.351	20	std	d	3	00 a5 1 c	5168	
0x127	TX	103.336	40	std	d	4	00 00 00 00	2584	
0X127	ТХ	103.346	25	std	d	5	00 00 00 00 00	4134	
0x223	RX	103.362	20	std	d	1	f0	5170	
0x224	RX	103.327	50	std	d	2	00 00	2069	
0x225	RX	103.332	100	std	d	3	00 b8 0e	1035	
0x226	RX	103.337	100	std	d	4	00 00 00 00	1035	
0x1000ABCD	TX	46.414	5632	ext	d	6	00 00 00 46 a4 00	3	
0x1000ABCE	TX	103.232	200	ext	d	7	00 00 00 00 00 00 00	517	
0x1000ABCF	TX	103.236	200	ext	d	8	00 00 00 00 00 00 00 00	517	
0x12001234	RX	103.342	100	ext	d	5	00 00 76 41 00	1035	
0x12001235	RX	103.347	20	ext	d	6	00 00 00 00 00 00	5170	
0x12001236	RX	103.343	31	ext	d	7	00 00 00 00 30 7e 0b	3446	

8.8.3 Scroll Window

If a Restbus Simulation or a CAN Trace is ongoing all CAN Messages received or transmitted by the CLDT Box are displayed in real time in the Scroll Window with the following content :

- absolute time in [s] of last message appearance on the bus
- CAN Message ID
- Information if message is received or transmitted by the CLDT Box
- > information if message is in standard or extended format
- information if message is a RTR (Remote Transmission Request) or Data
- Message Data Length
- Message content in hex-format

Simulatio	'n	Т	race Wdw		Scroll	Wdw Data Base Trigger
77.999	0x127	ΤХ	std	d	5	00 00 00 00 00
77.993	0x223	RX	std	d	1	fd
77.985	0x125	ТХ	std	d	3	00 ba 92
77.984	0x124	ТХ	std	d	2	00 00
77.974	0x127	TX	std	d	5	00 00 00 00
77.973	0x223	RX	std	d	1	fd
77.969	0x126	TX	std	d	4	00 00 00
77.968	0x226	RX	std	d	4	00 00 00
77.964	0x125	TX	std	d	3	00 ba 92
77.963	0x225	RX	std	d	3	00 46 43
77.959	0x124	TX	std	d	2	00 00
77.958	0x224	RX	std	d	2	00 00
77.954	0x123	ТΧ	std	d	1	7b
77.953	0x223	RX	std	d	1	fd
77.949	0x127	TX	std	d	5	00 00 00 00
77.944	0x125	ТΧ	std	d	3	00 ba 92
77.934	0x124	TX	std	d	2	00 00
77.933	0x223	RX	std	d	1	fd
77.929	0x126	TX	std	d	4	00 00 00
77.925	0x127	TX	std	d	5	00 00 00 00
77.924	0x125	TX	std	d	3	00 ba 92
77.913	0x223	RX	std	d	1	fd
77.909	0x124	TX	std	d	2	00 00
77.908	0x224	RX	std	d	2	00 00
77.904	0x125	TX	std	d	3	00 ba 92
77.899	0x127	TX	std	d	5	00 00 00 00 00
77.893	0x223	RX	std	d	1	fd fd
77.889	0x126	TX	std	d	4	00 00 00 00
77.885	0x125	TX	std	d	3	00 ba 92
77.884	0x124	TX	std	d	2	00 00
77.874	0x127	TX	std	d	5	00 00 00 00 00
77.873	0x223	RX	std	d	1	fd
77.868	0x226	RX	std	d	4	00 00 00 00
77.864 77.863	0x125	TX	std	d	3	00 ba 92
//.863	0x225	RX	std	d	3	00 46 43

8.8.4 Data Base Window

If a CAN data base (.dbc or .dbcj-file) has been loaded and a CAN Trace is ongoing, all received CAN Messages are displayed in real time in the Data Base Window in a Message-Signal-Tree-Structure with the following contents :

- CAN Message ID & Message or Signal Name
- Message Data Length
- information if message is in standard or extended format
- Signal Startbit information absolute position (0 ... 63 max.)
- Signal Bitlength information
- > Signal format information : Little Endian or Big Endian
- Calculated signal value
- > Signal unit
- Message content in hex-format
- > absolute time in [s] of last message appearance on the bus
- information about the Transmitter ECU
- information about the Reveiver ECU

Simulation Trace	Wdw	Scroll Wdw			Data Ba	se	Trigger				
Message IDs & Message Contents	DL	Туре	SB	BL	Endian	Value	Unit	Bus Value	Time	TX ECU	RX ECU
0x120 MonitoringStation_11	8	std						00 00 00 00 00 00 00 00	0.000	MONITOR_1	
0x121 MonitoringStation_12	8	std						00 00 00 00 00 00 00 00	0.000	MONITOR_2	
0x122 MonitoringStation_13	8	std						00 00 00 00 00 00 00 00	0.000	MONITOR_3	
0x123 MonitoringStation_14	8	std						00 00 00 00 00 00 00 00	0.000	MONITOR_4	
InsideTemperature			0	10	LE	0	degree	0			CENTRAL_ECU
OutsideTemperature			16	10	LE	0	degree	0			CENTRAL_ECU
AirHumidity			32	8	LE	0	%	0			CENTRAL_ECU
AtmosphericPressure			48	8	LE	0	hPa	0			CENTRAL_ECU
0x124 MonitoringStation_15	8	std						00 00 00 00 00 00 00 00	0.000	MONITOR_5	
0x130 MonitoringStation_21	8	std						00 00 00 00 00 00 00 00	0.000	MONITOR_6	
0x131 MonitoringStation_22	8	std						00 00 00 00 00 00 00 00	0.000	MONITOR_7	
0x132 MonitoringStation_23	8	std						00 00 00 00 00 00 00 00	0.000	MONITOR_8	
InsideTemperature			0	10	LE	0	degree	0			CENTRAL_ECU
OutsideTemperature			16	10	LE	0	degree	0			CENTRAL_ECU
AirHumidity			32	8	LE	0	%	0			CENTRAL_ECU
AtmosphericPressure			48	8	LE	0	hPa	0			CENTRAL_ECU
0x133 MonitoringStation_24	8	std						00 00 00 00 00 00 00 00	0.000	MONITOR_9	
0x134 MonitoringStation_45	8	std						00 00 00 00 00 00 00 00	0.000	MONITOR_20	
0x140 MonitoringStation_25	8	std						00 00 00 00 00 00 00 00	0.000	MONITOR_10	
0x141 MonitoringStation_31	8	std						00 00 00 00 00 00 00 00 00	0.000	MONITOR_11	
0x142 MonitoringStation_32	8	std						00 00 00 00 00 00 00 00 00	0.000	MONITOR_12	
0x143 MonitoringStation_33	8	std						00 00 00 00 00 00 00 00 00	0.000	MONITOR_13	
0x144 MonitoringStation_34	8	std						00 00 00 00 00 00 00 00 00	0.000	MONITOR_14	
0x150 MonitoringStation_35	8	std						00 00 00 00 00 00 00 00 00	0.000	MONITOR_15	
OLA EL MALINALIZATION AL	0							00 00 00 00 00 00 00 00	0.000	MONITOD 16	

8.8.4.1 dbcj - Data Base Editor – (not implemented yet)

A Data Base Editor is planned to be integrated in a future SW release to offer the possibility to create user specific data tree structures.

8.8.5 Trigger Window

The CLDT Box provides 4 digital HW Outputs that can either be used

➔ as Digital Signal Outputs which can be synchronized with a Restbus Simulation TX Message or manually set / reset by the user

or

➔ as Digital Trigger Signal Outputs triggering when predefined CAN Messages or predefined CAN Message Contents appear on the Bus

Trig 1	Trig 2	V-Trig 3	v	-Trig 4	Trig 5 Trig 6	6 V-Trig 7	V-Trig 8
Trigger Conditions					Trigger Conditions		
Set Trigger Active					Set Trigger Active	1	
Name : No_Name	e	ID:	0x1234	5678	Name : No_Name	ID:	0x12345678
Condition					Condition		
On Message	Start Byte :	2 👻	Big Endi	ian 👻	On Message Star	rt Byte : 2 🔻	Big Endian 👻
On Content	Start Bit :	6 🔻				rt Bit : 6 🔻	
 Bit Int 	Bit Length :	12 🔻			Bit Bit Bit L	Length : 12 🔻	
. Inc	Condition :	==	•	0		ndition : ==	▼ 0
Combined Trigger					Combined Trigger		
Combined Trig	ger	AND (x))	•	Combined Trigger	AND (x)) 🔻
Combine With	Trig5	AND (x)		•	Combine With Trig5	AND (x)) 🔻

Trigger Window with 4 x HW Trigger & 4 x Virtual Trigger

8.8.5.1 Define Trigger Events

In the Trigger Window up to 8 different trigger conditions causing trigger pulses or trigger signals on the 4 HW Trigger Outputs can be defined.

The trigger conditions can be combined among themselves by respecting certain rules in order to offer a wide range of message and message content combinations for triggering.

The following table is showing the trigger conditions with their dedicated HW Outputs :

SW Trigger Condition	triggered HW Output
Trig1	HW Output 1
Trig2	HW Output 2
Trig5	HW Output 3
Trig6	HW Output 4
V-Trig3	Virtual Trigger : only useful for combined triggering
V-Trig4	Virtual Trigger : only useful for combined triggering
V-Trig7	Virtual Trigger : only useful for combined triggering
V-Trig8	Virtual Trigger : only useful for combined triggering

Trigger Conditions for Simple Trigger Events

Condition 1	Condition 2	Nb of bits	Condition 3	Value	Trigger Output
On Message					positive pulse
			== 1		true : High false : Low
On Content	Bit	1	== 0		true : High false : Low
			On Change		positive pulse
	Int	-	==	16 bit value	true : High false : Low
		2 16	<	16 bit value	true : High false : Low
	int	2 10	>	16 bit value	true : High false : Low
			On Change		positive pulse

Message Info	Description
Set Trigger Active	the trigger is activated only if this check box is set
Name	user definable trigger name
ID	CAN ID for the message which shall be triggered
Start Byte	Startbyte if trigger on message content
Start Bit	Startbit if trigger on message content
Bit Length	Bitlength if trigger on message content
Endian	Little Endian or Big Endian Format

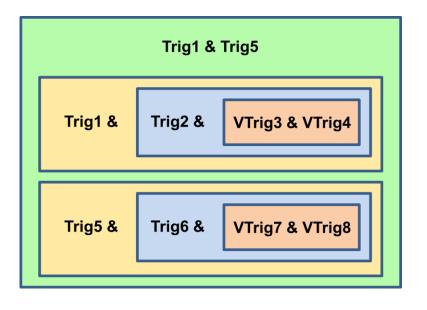
Explanation of 'Startbyte', 'Startbit', 'Bitlength' and 'Endian' :

Chapter Little Endian / Big Endian Support

Trigger Usage Example : Chapter

Example : Trigger Output Usage

Trigger Conditions for Combined Trigger Events : Use of Virtual Triggers


Each trigger can be combined with its trigger superior in hierarchy by setting the corresponding check box in the Trigger Window. Additionally the trigger 1 can be combined with trigger 5.

Combined Trigger		
Combined Trigger	AND (x)	•
📝 Combine With Trig5	AND (x)	-

The following logical concatenations for combined triggers can be used :

→	trigger(x)	AND	trigger(x+1)
→	trigger(x)	OR	trigger(x+1)
→	trigger(x)	AND NOT	trigger(x+1)
→	trigger(x)	OR NOT	trigger(x+1)

The following trigger combinations are possible :

Trigger Usage Example : Chapter <u>Example : Trigger Output Usage</u>.

8.8.5.2 Typical Trigger Response Time

The trigger response time depends slightly on the number of trigger combinations which are defined for a chosen trigger. The greater the number of trigger combinations, the greater the trigger delay.

The following figure shows the typical delay and typical rising time for the HW trigger outputs :

STOP	[······	<u>∱ CH1</u> 2.41V
Div : 40 µs		
	CANH	
	la na dina dia mpika mpika Tanggi ang mpika mpika Tanggi ang mpika	المراجعة ال المراجعة المراجعة الم المراجعة المراجعة الم
	Trigger Outp	
untering and and and and and and a specific data and a d		
< 100 µs ty	p	

typical trigger response time :	< 100 µs
typical rising time :	< 50 µs

8.9 Restbus Simulation RX & TX Windows

For the restbus simulation the user interaction is realized via the RX & TX Windows.

8.9.1 RX Windows

RX Windows allow the user to choose variables within the pre-defined CAN RX messages from the <u>CAN RX Message Window</u> and display their values in the RX Windows in real time.

8.9.1.1 Add RX Windows to an existing project

Main Menu	Item	Description
Restbus	Load Rx Table	Load a new or an existing RX Simulation Window

Choose the RX Windows Name and click the 'Open-Button'. An empty RX-Window will be opened. The Window Name appears at the top of the window

8.9.1.2 Remove RX Windows from an existing project

Sim Menu	Item	Description
Window	Close	Close RX Windows or remove RX Windows from the project

→ Choose if the window just shall be closed (window will be re-opened on next project load)

or

if the window shall be completely removed from the project.

Remark : The window will never be deleted. If a window shall be deleted definitively this must be done by the Windows Explorer.

8.9.1.3 Open existing RX Windows in a project

Main Menu	Item	Description
Restbus	Load Rx Table	Load a new or an existing RX Simulation Window

Choose the existing RX-Table and click on the 'Open-Button'.

8.9.1.4 RX / TX Window Menu Items

Menu	Item	Description	
	Hide	window is hidden (not closed !)	
Window	Redraw	window is just redrawn in case of displaying problems	
	Close	Close window or remove window from project	
	Flag	a new boolean control is added	
	Value	a new integer value control is added	
Add	Ext Value	a new extended integer value control is added	
	Radio Control	a new radio control is added	
	Slide Control	a new slide control is added	

Remark : Extended Values, radio controls & slide controls are only available from PC SW Version VA003 on.

8.9.2 TX Windows

TX Windows allow the user to set variables within the pre-defined CAN TX messages from the <u>CAN TX Message Window</u> and put their values on the bus in real time.

TX Window handling (add, remove etc.) is the same as <u>RX Window handling</u>.

8.9.3 User Controls for RX & TX Windows

8.9.3.1 Value Control

- Up to 20 integer variable controls (2 ... 32 bit) can be added to each RX or TX Window
- For each of the values the Value Properties must be set to define the allocation between the bus value and the RX / TX Window Values
- Depending on the properties 'Show digit only' (see chapter <u>Value</u> <u>Properties</u>), the value is shown in small or enlarged format

My_value1	N	1y_value2			
0 digit		0	digit	0	℃

Remove Value Controls from RX or TX Windows

A double mouse click on the right bottom corner of the control opens its properties dialog

My_value2	2			
0	digit	0	°C	

double click

Set the 'Remove' properties at the bottom of the dialog to 'true', press 'Enter' or type 'OK'

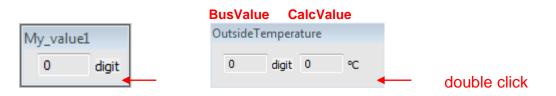
Remove from Proj	iect :
Remove Variable	▼ true
ОК	Cancel

update the project with the 'update command button' in the CAN message window

R	X Msg	TX Msg	
Add		Update	
ext rtr	ID	DL Cycle	

8.9.3.2 Value Control Properties

The value control properties define the allocation between the bus value and the simulation values that are displayed in the RX / TX Windows.


Define Value Control Properties

In the Value Control Window the integer bus value is displayed on the left side. On the right side a float value which is calculated with the linear formula

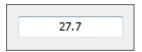
CalcValue = a * BusValue + b

is displayed. a & b are defined in the control properties.

To display the control properties window double click the right bottom corner of the control

Define Properties

Variable Name	OutsideTemperature
CAN Infos :	
CAN ID	▼ 0x123
Startbyte	▼ 0
Startbit	▼ 0
Bitlength	 ▼ 10
Endian	▼ Little_Endian
a	1
a	1
Ь	0
Unit	°C
Show digit only	▼ false
Remove from Pro	oject :
Remove	▼ false


Properties	Description	
Variable Name	name that appears on top of control	
CAN ID	CAN ID that contains the variable	
Startbyte	see <u>'CAN Message Format'</u>	
Startbit	see <u>'CAN Message Format'</u>	
Bitlength	see <u>'CAN Message Format'</u>	
Endian	see <u>'CAN Message Format'</u>	
а	coefficient for value calculation	
b	offset for value calculation	
Unit	unit for the calculated value	
Show digit only	display digit value only	
Remove	remove variable from project	

8.9.3.3 Change the controls TX Value during Restbus Simulation

To display the controls value window right mouse click the right bottom corner of the control

My_value1	OutsideTemperature	
0 digit	0 digit 0 °C	
		right mouse clic

Insert the new value into the value dialog

Confirm with 'ENTER' or exit with 'ESC'

8.9.3.4 Flag Control - Boolean Value

- > Up to 20 flag controls (1 bit values) can be added to each RX or TX Window
- For each of the flags the Flag Properties must be set to define the allocation between the bus value and the RX / TX Window Values
- Depending on the properties 'LED symbol' (see chapter <u>Flag Properties</u>), Boolean values can be displayed in 'Check Box' or 'LED' format

Flag_X	Flag_Y
Active 📝	ON 🥥

Remove Flag Controls from RX or TX Windows

A double mouse click on the right bottom corner of the control opens its properties dialog

Flag_Y		
ON	0	
		 double clic

Set the 'Remove' properties at the bottom of the dialog to 'true', press 'Enter' or type 'OK'

Remove from Project :		
Remove	▼ false	
ОК	Cancel	

update the project with the 'update command button' in the CAN message window

R	(Msg	τ	(Msg	
Add			Upda	
ext rtr	ID	DL	Cycle	Auto

8.9.3.5 Flag Control Properties

The flag control properties define the allocation between the bus value and the simulation flags that are displayed in the RX / TX Windows.

Define Flag Control Properties

To display the control properties window double click the right bottom corner of the control

Define Properties

Variable Infos :	
Variable Name	Flag_Y
Unit	ON
CAN Infos :	
CAN ID	▼ 0x123
Startbyte	■ 0
Startbit	■ 0
LED Infos ;	
LED Symbol	▼ true
LED Color ON	✓ Green
LED Color OFF	▼ Red
Remove from Proj	ect :
Remove	▼ false
ОК	Cancel

Properties	Description
Variable Name	name that appears on top of control
Unit	unit for the calculated value
CAN ID	CAN ID that contains the variable
Startbyte	see <u>'CAN Message Format'</u>
Startbit	see <u>'CAN Message Format'</u>
LED Symbol	display LED symbol or check box
LED Color ON	'true' color
LED Color OFF	'false' color
Remove	remove flag from project

8.9.3.6 Change the controls TX Value during Restbus Simulation

To change the Boolean TX value of a flag control during restbus simulation just simple click the check box or the LED symbol.

simple left mouse click

If a LED symbol is activated the color will switch between the two colors defined in the properties dialog.

8.9.3.7 Extended Value Control - (from PC SW VA003 on)

- Up to 10 extended integer variable controls (2 ... 32 bit) can be added to each RX or TX Window
- For each of the values the Value Properties must be set to define the allocation between the bus value and the RX / TX Window Values
- Depending on RX or TX windows the extended value is shown with or without positioning buttons

RX Window		Т	X Wind	ow			
				Outside_T	emperatu	re	
Outside_T	emperatu	re		-20	35.75	85	[°C]
-20	-20.00	85	[°C]	2000	7575	12500	[dig
2000	2000	12500	[dig]	 < <<		>>>	

Remove Extended Value Controls from RX or TX Windows

A double mouse click on the right bottom corner of the control opens its properties dialog

-20 -20.00 85 [°C] 2000 2000 12500 [dig]	Outside_T	emperatu	re	
2000 2000 12500 [dig]	-20	-20.00	85	[°C]
	2000	2000	12500	[dig]

double click

Set the 'Remove' properties at the bottom of the dialog to 'true', press 'Enter' or type 'OK'

Remove from Project :		
Remove Variable	▼ true	
ОК	Cancel	

update the project with the 'update command button' in the CAN message window

	Msg	тх	Msg	
Add			Upda	
ext rtr 1	ID	DL	Cycle	Auto

8.9.3.8 Extended Value Control Properties

The extended value control properties define the allocation between the bus value and the simulation flags that are displayed in the RX / TX Windows.

Define Extended Value Control Properties

To display the control properties window double click the right bottom corner of the control

Outside_Temperature					
-20	-20.00	85	[°C]		
2000	2000	12500	[dig]		

double click

Define Properties

Variable Infos :	
Variable Name	Outside_Temperatu
CAN Infos :	
CAN ID	▼ 0x123
Startbyte	▼2
Startbit	■ 0
Bitlength	 ▼ 16
Endian	▼ Little_Endian
Calculated Value :	
a	0.01
b	-40
Unit	°C
Min Value	-20
Max Value	85
Value Steps :	[digit]
< Min Step >	10
<< Max Step >>	1000
Remove from Proj	ect :
Remove Variable	▼ false
ОК	Cancel

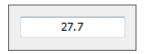
Properties	Description
Variable Name	name that appears on top of control
CAN ID	CAN ID that contains the variable
Startbyte	see <u>'CAN Message Format'</u>
Startbit	see <u>'CAN Message Format'</u>
Bitlength	see <u>'CAN Message Format'</u>
Endian	see <u>'CAN Message Format'</u>
а	coefficient for value calculation
b	offset for value calculation
Unit	unit for the calculated value
Min Value	min. limit value for TX values
Max Value	max. limit value for TX values
< Min Step >	TX : step size in digit : < or > button
<< Max Step >>	TX : step size in digit : << or >> button
Remove	remove variable from project

8.9.3.9 Change the controls TX Value during Restbus Simulation

1) Use controls positioning buttons

Outside_T	emperatu	re	
-20	35.75	85	[°C]
2000	7575	12500	[dig]
<u> <</u> <<		>>>	🔸

simple mouse click


With each simple mouse click the TX value will increase or decrease with the step size [digit] defined in the controls properties.

2) Use controls Value Window

To display the controls value window right mouse click the right bottom corner of the control

Outside_T	emperatu	re	
-20	35.75	85	[°C]
2000	7575	12500	[dig]
<u> <</u> <<		>>>]

Insert the new value into the value dialog

Confirm with 'ENTER' or exit with 'ESC'

8.9.3.10 Radio Control - (from PC SW VA003 on)

- Up to 10 radio controls can be added to each RX or TX Window
- For each of the values the Value Properties must be set to define the allocation between the bus value and the RX / TX Window Values
- Each radio control can display between 2 and 8 different states

tate2 © tate3 © tate4 © tate5 © tate6 ©	Vehicle_Stat
tate3 © tate4 © tate5 © tate6 ©	State 1
tate4 O tate5 O tate6 O	State2
tate5 O tate6 O	State3
tate6	State4
	State5
	State6
tate7 🔘	State7
tate8 🔘	State8

Remove Radio Controls from RX or TX Windows

A double mouse click on the right bottom corner of the control opens its properties dialog

double click

Set the 'Remove' properties at the bottom of the dialog to 'true', press 'Enter' or type 'OK'

Remove from Project :				
Remove Variable	▼ true			
ОК	Cancel			

update the project with the 'update command button' in the CAN message window

RX Msg	TX Msg
Add ext rtr ID	Update Auto DL Cycle

8.9.3.11 Radio Control Properties

The radio control properties define the allocation between the bus value and the simulation flags that are displayed in the RX / TX Windows.

Define Radio Control Properties

To display the control properties window double click the right bottom corner of the control

Vehicle_St	ate
State 1	۲
State2	\bigcirc
State3	\bigcirc
State4	\bigcirc
State5	\bigcirc
State6	\bigcirc
State7	\bigcirc
State8	\odot

Define Properties

Variable Infos :	
Variable Name	Vehicle_State
CAN Infos :	
CAN ID	▼ 0x123
Startbyte	▼ 3
Startbit	~ 0
Bitlength	- 8
Endian	✓ Little_Endian
Appearance :	
Number of Buttons	▼ 8
Button Name	Button Value
State1	1
State2	2
State3	4
State4	8
State5	16
State6	32
State7	64
State8	128
Remove from Proje	ect :
Remove Variable	▼ false
ОК	Cancel

Properties	Description		
Variable Name	name that appears on top of control		
CAN ID	CAN ID that contains the variable		
Startbyte	see <u>'CAN Message Format'</u>		
Startbit	see <u>'CAN Message Format'</u>		
Bitlength	see <u>'CAN Message Format'</u>		
Endian	see <u>'CAN Message Format'</u>		
Nb of Buttons	Number of displayed buttons		
Button Name	name of the corresponding button		
Button Value	digit value for 'true' condition		
Remove	remove variable from project		

8.9.3.12 Change the controls TX Value during Restbus Simulation

To change the TX value of a radio control during restbus simulation just simple click the new button within the control.

Vehicle_Sta	ate	
State 1	۲	
State2	\odot	
State3	\odot	
State4	\odot	
State5	0	
State6	\odot	
State7	\odot	
State8	\odot	

The value, concatenated to this button in the controls properties, will be put on the bus.

8.9.3.13 Slide Control - (from PC SW VA003 on)

- Up to 10 slide controls can be added to each RX or TX Window
- For each of the values the Value Properties must be set to define the allocation between the bus value and the RX / TX Window Values

Outside_Temperature					
-20.5	21.61	85.5	[°C]		
1950	0 6161	12550	[dig]		
< </td <td></td> <td>>>></td> <td></td>		>>>			

Remove Slide Controls from RX or TX Windows

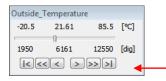
A double mouse click on the right bottom corner of the control opens its properties dialog

Outside_1	Temperatur	e	
-20.5	21.61	85.5	[°C]
1950	6161	12550	[dig]
< </td <td></td> <td>>>></td> <td></td>		>>>	

Set the 'Remove' properties at the bottom of the dialog to 'true', press 'Enter' or type 'OK'

Remove from Project :				
Remove Variable	▼ true			
ОК	Cancel			

update the project with the 'update command button' in the CAN message window


RX Msg	TX Msg	
Add ext rtr ID	Update DL Cycle	

8.9.3.14 Slide Control Properties

The slide control properties define the allocation between the bus value and the simulation flags that are displayed in the RX / TX Windows.

Define Slide Control Properties

To display the control properties window double click the right bottom corner of the control

double click

Define Properties

Variable Infos :	
Variable Name	Outside_Temperatu
CAN Infos :	
CAN ID	▼ 0x1000ABCD
Startbyte	~ 0
Startbit	▼ 0
Bitlength	 ▼ 16
Endian	▼ Little_Endian
Calculated Value :	
a	0.01
b	-40
Unit	℃
Min Value	-20.5
Max Value	85.5
Slide Steps :	[digit]
< Min Step >	10
<< Max Step >>	1000
Update On Slide	▼ true
Remove from Proje	ect :
Remove Variable	▼ false
ОК	Cancel

Properties	Description
Variable Name	name that appears on top of control
CAN ID	CAN ID that contains the variable
Startbyte	see <u>'CAN Message Format'</u>
Startbit	see <u>'CAN Message Format'</u>
Bitlength	see <u>'CAN Message Format'</u>
Endian	see <u>'CAN Message Format'</u>
а	coefficient for value calculation
b	offset for value calculation
Unit	unit for the calculated value
Min Value	min. limit value
Max Value	max. limit value
< Min Step >	step size in digit : < or > button
<< Max Step >>	step size in digit : << or >> button
Update on slide	auto update slide position during sliding (only if auto - update is enabled)
Remove	remove variable from project

RX Msg	TX Msg
Add	Update
ext.rtr ID	DL Oxcle ♥ 1 100

8.9.3.15 Change the controls TX Value during Restbus Simulation

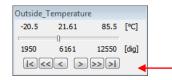
1) Use controls positioning buttons

Outside_1	Femperatur	e	
-20.5	21.61	85.5	[°C]
1950	6161	12550	[dig]
		2220	

simple mouse click

With each simple mouse click the TX value will increase or decrease with the step size [digit] defined in the controls properties.

2) Use Slider


Outside_1	Femperatur	e	
-20.5	21.61	85.5	[°C]
1950	6161	12550	[dig]
<<< >>>>			

left mouse down & draw the slider

Remark : If the control property 'Update On Slide' is set to 'true' and the auto-update check box in the CAN TX Messages window is set, the TX value, put on the bus, is updated cyclically during sliding !

3) Use controls Value Window

To display the controls value window right mouse click the right bottom corner of the control

right mouse click

Insert the new value into the value dialog

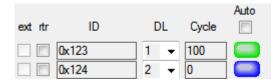
Confirm with 'ENTER' or exit with 'ESC'

8.9.4 TX Configuration Window

Main Menu	Item	Description
Restbus	TX Configurations	Open TX Configuration Window

TX Configurations serve as shortcuts to pre-defined TX window variable values in the restbus simulation mode. If a stored TX Configuration is applied all TX variables in all TX windows are updated with the values which were applied at the moment when the TX configuration was stored.

When the Trigger Mode is not activated (Activate Osci Trigger check box in the Toolbar is not set)



the 4 x Outputs can additionally be used as digital signal outputs. In this mode they either can be set manually by the user or they can be synchronized with the TX Configurations.

Tx Configuratio	n Setup	23	J
		Output 1 2 5 6	Synchronize with TX Configurations
Tx Cfg 1	Description Tx Configuration		
Tx Cfg 2	Description Tx Configuration		
Tx Cfg 3	Description Tx Configuration		
Tx Cfg 4	Description Tx Configuration		
Tx Cfg 5	Description Tx Configuration		
Tx Cfg 6	Description Tx Configuration		
Tx Cfg 7	Description Tx Configuration		
Tx Cfg 8	Description Tx Configuration		
Tx Cfg 9	Description Tx Configuration		
Tx Cfg 10	Description Tx Configuration		
Set Output			
Set	Output 1 Output 5	5	
	Output 2 Output 6	5	
set Outputs	manually		

8.9.4.1 Save TX Configurations

- start the restbus simulation
- > set all control values in all TX simulation windows to the desired values
- > update the simulation bus values : only blue & green TX LEDs must appear

if there are still yellow or orange LEDs click on the corresponding LED to update the bus values or click the auto-update check box

				Auto
ext rtr	ID	DL	Cycle	
	0x123	1 👻	100	
	0x124	2 👻	0	

- set the description text for the new TX configuration
- if not in Trigger Mode set the 4 HW Output states if Outputs shall be synchronized with the TX configuration
- > right mouse click the 'Tx Cfg X' Button to store the current configuration

8.9.4.2 Apply TX Configurations

- start the restbus simulation
- > open the TX Configuration window
- Ieft mouse click the 'Tx Cfg X' Button to apply the stored TX configuration

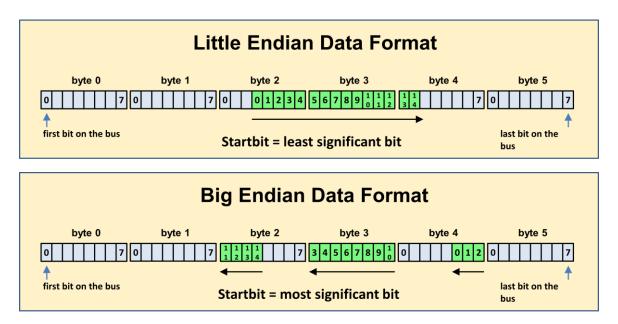
8.10 CAN Message Format : Little Endian / Big Endian Support

The user data within a CAN message is encapsulated in an up to 64 bit wide data field in which the least significant bit (bit 0) is sent first and the most significant bit (bit 63) is sent last :

0 … 64 bit CAN Message
byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7 0 1 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 1 1 7 0 1 1 7 0 1 1 7

Within the 64 bit field the user variables can be coded in two different formats that are both supported by the CLDT Tool :

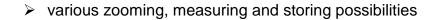
Little Endian Data Format :

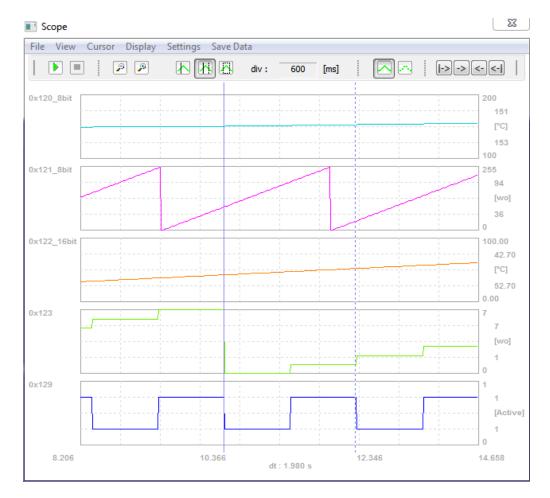

least significant bit is sent first

Big Endian Data Format :

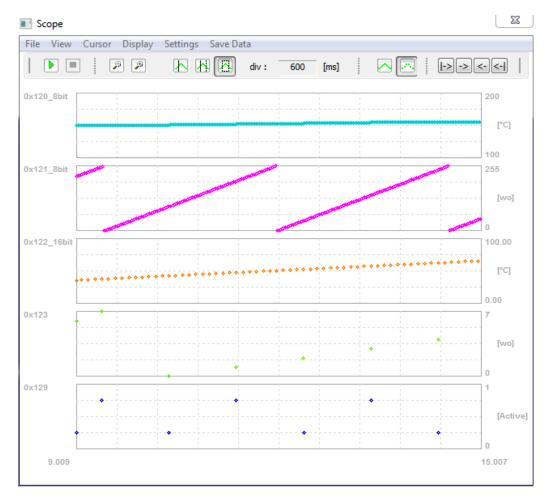
most significant bit is sent first

To explain the differences between the two formats the following example illustrates how a variable with a Bitlenth of 15 bits is coded within a 6 byte CAN message with


- Variables Startbyte : byte 2
- Variables Startbit : bit position 3 within the Startbyte byte 2



9 Scope Functionality

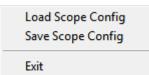

A Scope Functionality is integrated in the SW since Version A004

- > monitor up to 8 bus signals in real time with a resolution of 1ms
- up to 50s monitoring memory
- display signals in Line Mode or in Dot Mode

Scope Functionality in Line Mode

Scope Functionality in Dot Mode

9.1 Scope Toolbar Description


	start / stop restbus simulation
R	zoom in / zoom out
	switch between simple cursor, time cursor & rectangle zoom
div : 5000 [ms]	shows the current resolution in ms
	switch between line mode & dot mode
-> <- <-	move signals to the right / left

9.2 Scope Menu Description

File View Cursor Display Settings Save Data

The Menu Items are described in detail in the following chapters :

9.2.1 File Menu

Menu Item	Description	
Load Scope Config	Loads a scope configuration that has been saved before	
Save Scope Configuration	Saves the current scope configuration	
Exit	Closes the scope mode	

9.2.2 Cursor Menu

Off Simple Cursor Time Diff

Menu Item	Description
Off	activates the rectangle zooming mode
Simple Cursor	activates the line cursor only
Time Diff	activates the line cursor and the dot cursor

9.2.3 View Menu

CH1	
CH 2	
CH 3	
CH 4	
CH 5	
CH 6	
CH7	
CH 8	

Menu Item	Description
CH1	Shows / Hides Scope Channel 1
CH2	Shows / Hides Scope Channel 2
CH3	Shows / Hides Scope Channel 3
CH4	Shows / Hides Scope Channel 4
CH5	Shows / Hides Scope Channel 5
CH6	Shows / Hides Scope Channel 6
CH7	Shows / Hides Scope Channel 7
CH8	Shows / Hides Scope Channel 8

9.2.4 Display Menu

Dot Line

Menu Item	Description
Dot	activates dot displaying mode
Line	activates line displaying mode

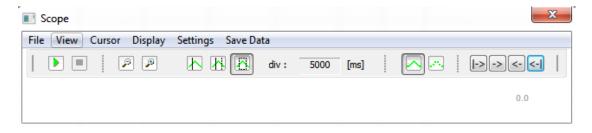
9.2.5 Settings Menu

Channels

Menu Item	Description
Channels	activates the Channel Settings dialog to define signal parameters

9.2.6 Save Data Menu

Whole Wdw To Clipboard Scope Wdw To Clipboard Choose Rectangle To Clipboard


Save data file

Menu Item	Description
Whole Wdw To Clipboard	Copies the whole scope window to the clipboard
Scope Wdw To Clipboard	Copies the signals only to the clipboard
Choose Rectangle To Clipboard	User to choose the rectangle content that is copied to the clipboard
Save data file	The signal data in [digit] is exported to a text file

9.3 Use of Scope Mode

The Scope Functionality can only be used if a project is loaded and if RX or TX signals are defined for restbus simulation mode.

Then the main window menu \rightarrow Restbus \rightarrow Scope Active activates the Scope Mode.

Before starting the restbus simulation each signal that is defined in a RX or TX simulation window can be added to the scope.

A right click on the right bottom corner of the control and choosing 'Add To Scope' adds up to 8 signals to the scope.

21.61	85.5	[°C]
6161	12550	[dig]
$ \langle\langle\langle\langle\rangle\rangle\rangle\rangle\rangle\rangle$		
	0 6161	0 6161 12550

right mouse click

Alternatively the signals can be manually chosen by the scope menu item \rightarrow Settings \rightarrow Channels and manually activated via the menu item \rightarrow View

	Variable Name	Alias	Туре	min	max	auto
Channel 1:	_i0x120_8b 🔻	_i0x120_8t	int	0	255	V
Channel 2 :	_i0x121_8b 🔻	_i0x121_8t	int	0	255	V
Channel 3 :	_i0x122_16 🔻	_i0x122_16	int	0	65535	V
Channel 4:	NO_VAR -	NO_VAR	int	0	1	
Channel 5 :	NO_VAR -	NO_VAR	int	0	1	V
Channel 6 :	NO_VAR -	NO_VAR	int	0	1	V
Channel 7:	NO_VAR -	NO_VAR	int	0	1	
Channel 8 :	NO_VAR -	NO_VAR	int	0	1	V
OK Cancel Update						

9.4 Start / Stop Restbus Simulation in Scope Mode

Use the toolbars Start & Stop Button to control the restbus simulation flow.

Use the mouse wheel to zoom in / out during restbus simulation

The mouse wheel can be used to switch between displaying modes

5s / div 2,5s / div 1s / div

during simulation

9.5 Analyzing Bus Signals when Restbus Simulation is stopped

9.5.1 Zooming Possibilities

Use the mouse wheel to zoom in / out

A resolution of 1ms/div can be reached if the mouse wheel is used for zooming

Use the time cursor mode to zoom in

mouse click to activate time cursor mode

position the line cursor with the left mouse button, position the dotted cursor with the right mouse button

mouse click the zoom button to zoom the signal content between the 2 cursors

Use the rectangle zoom to zoom in

mouse click to activate rectangle zoom mode

Left click the left top corner of the desired zooming rectangle, draw the mouse to the right bottom corner and then release the mouse button.

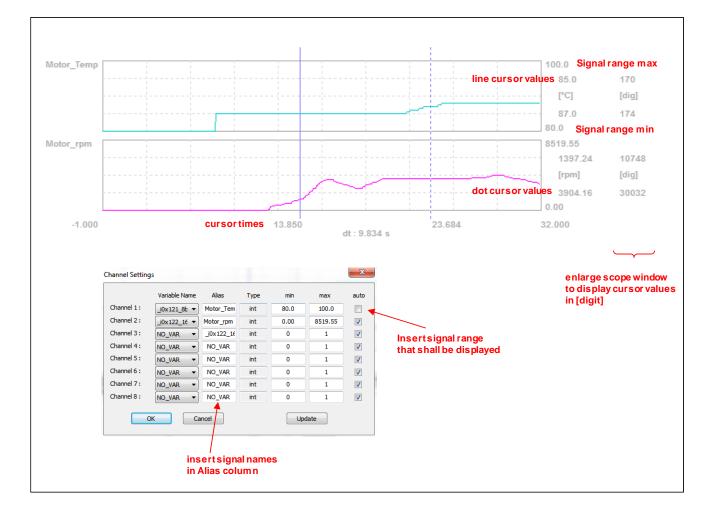
Use the zoom out button to zoom out

zoom out button

9.5.2 Measuring Possibilities

Simple Cursor Mode

mouse click to activate simple cursor mode


position the line cursor with the left mouse button

Time Cursor Mode

mouse click to activate time cursor mode

position the line cursor with the left mouse button position the dotted cursor with the right mouse button

9.5.3 Storing Possibilities

Whole Wdw To Clipboard Scope Wdw To Clipboard Choose Rectangle To Clipboard

Save data file

Copy Scope Window to Clipboard

For documentation purpose the whole content or parts of the the scope window can be copied to the clipboard and afterwards inserted in another application like Word, Excel etc.

Use the scope menu items \rightarrow Save Data

→Save Data→Whole Wdw To Clipboard

 \rightarrow Save Data \rightarrow Scope Wdw To Clipboard

→Save Data→Choose Rectangle To Clipboard

Save Signal Data in Text File

The values in [digit] for each signal can be exported to a text file, which can be used by other applications like Excel to generate user specific diagrams or to superpose different signals.

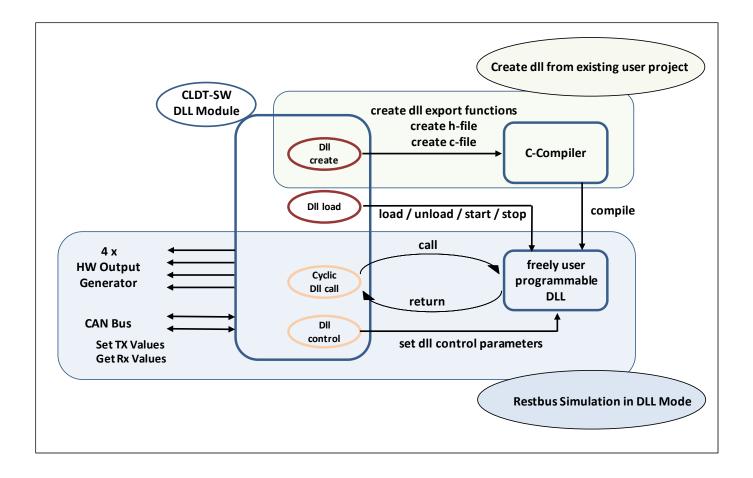
Use the scope menu item

→Save Data→Save data file

10 RX – TX Automation with synchronization possibility between physical HW Outputs and CAN Bus Messages

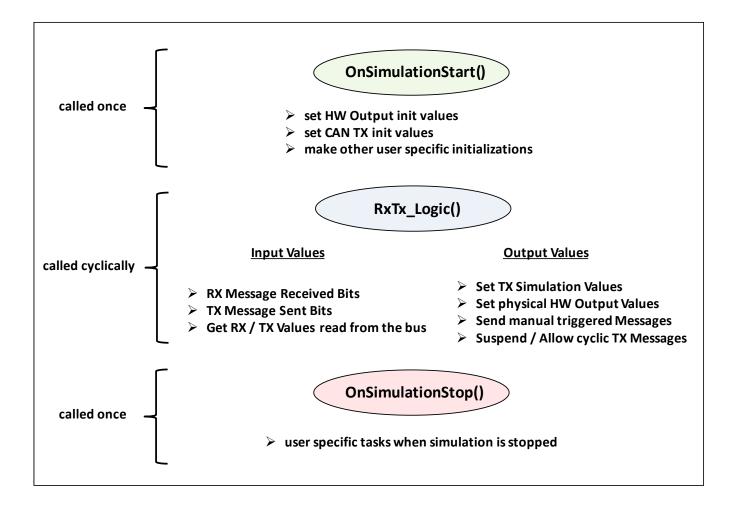
RX-TX Automation Functionality is integrated in the SW since Version A004.

IMPORTANT :


If applications with increased timing requirements shall be simulated please refer to the chapter <u>'Timing</u> <u>Requirements under Windows Operating Systems'</u>.

In any case ensure that the VCP Latency Timer for the USB device is set to a value < 3ms as described in the chapter <u>'Correct Setting for VCP Latency Timer'</u>

10.1 RX-TX Automation : Functional principle


The user has the possibility to automatize the whole CAN Bus RX/TX transmission and thereby synchronize the RX/TX messages with 4 freely programmable HW Output generators. The following figures describe the functional principle of creating a user specific RX/TX logic.

- create a restbus simulation project with CLDT SW
- > add a 'dll control panel' to the restbus simulation project
- create a dll project by using the 'dll-create panel'
- > edit 3 central dll export functions with C-Compilers IDE
- > Compile the dll project with C-Compiler
- Ioad the compiled dll by using the 'dll-load panel'
- > start the restbus simulation by using the 'dll-load panel'

10.2 Central DLL export functions to create user specific RX/TX logic

Three dll export functions are pre-defined and can be edited with any C-Compiler able to create regular 32bit dll projects :

Currently the LCC Compiler and the Microsoft VC++ Compiler are directly supported to automatically generate the skeletal structure with its integrated dll export functions for a dll project (see chapter <u>'Supported C-Compilers'</u>). In the future direct support for Borlands C++ Builder is planned.

But, theoretically, each C-Compiler able to create regular 32 bit DLLs can be used to create user specific applications.

10.3 DLL export functions for Data Exchange with CLDT SW

An overview of all dll export functions which must be provided by the dll is listed below. If the CLDT SW does not find all of the listed functions, the dll cannot be loaded.

dll export Functions Data Exchange	Description
<pre>void vSetOutputPointer(int *)</pre>	sets a pointer to an array in the CLDT SW
void vSetRxValuePointer(int*)	sets a pointer to an array in the CLDT SW
void vSetTxValueBusPointer(int*)	sets a pointer to an array in the CLDT SW
void vSetTxValueUserPointer(int*)	sets a pointer to an array in the CLDT SW
void vSetDllControlDataPointer(int*)	sets a pointer to an array in the CLDT SW
void vSetRxMsgPointer(int*)	sets a pointer to an array in the CLDT SW
<pre>void vSetTxMsgPointer(int*)</pre>	sets a pointer to an array in the CLDT SW
<pre>void vSetManTxMsgPointer(int*)</pre>	sets a pointer to an array in the CLDT SW
<pre>void vSetSuspendTxMsgPointer(int*)</pre>	sets a pointer to an array in the CLDT SW
void vSetRxMsg(int)	sets the BOOL value RX Message Received
void vSetTxMsg(int)	sets the BOOL value TX Message Sent

dll export Functions User Logic	Description
void vSimulationStart(void)	user specific initialization tasks before simulation start
int* iRxTx_Logic(INT64)	user specific RX/TX logic
void vSimulationStop(void)	user specific tasks after simulation stop

Remark :

All function parameters and function return values are explained in the chapter *'Example : RX/TX Automation with HW Output Synchronization'*

10.4 Supported C-Compilers for automated code generation

In principle each C-Compiler with the ability to create regular 32 bit DLLs can be used to create user specific applications.

However some C-Compilers like the LCC Compiler and the Microsoft VC++ Compiler are supported directly in order to create the skeletal structure of the dll project with its integrated dll export functions.

10.4.1 Free LCC-Win32 Compiler

Important Note :	The LCC Compiler is available for free only for non- commercial use !
	(see http://www.cs.virginia.edu/~lcc-win32/)

An example for a dll restbus simulation project, compiled with the LCC Compiler is shown in the chapter <u>'Example : RX/TX Automation with HW Output</u> <u>Synchronization'</u>

10.4.2 Microsoft VC++ Compiler

Both, the free VC++ Express edition and the commercial VC++ edition are supported for automatic code generation.

Examples for dll restbus simulation projects, compiled with the MSVC++ Compiler are shown in the chapter <u>'Example : RX/TX Automation with HW</u> <u>Output Synchronization'</u>

10.4.3 Borland C++ Builder

The Borland C++ Builder is not supported yet, but support is planned in the near future.

10.5 DLL Control Panel

Purpose : control dll user logic program flow

All TX Controls which are available for TX simulation windows, can be added to the dll control panel. Thus, during restbus simulation the user can interact and change the control panels TX values. The modified values are transmitted in real time to the dll.

Add a dll control panel to a restbus simulation project

Main menu item →dll→load dll Control Panel

Each time, just before the dll function iRxTx_Logic() is called, the dll control panel values are updated.

The dll function iRxTx_Logic() can access these values.

DIIControl.t	txt : TX				
Window	Add				
		ctlSollwer	t		
ctlStart		0	25	100	[wo]
started	۲		25	100	[dig]
					,
ctlState	-	ctlValue			
State 1	0	0	digit	0	wo
State2	\odot	L Š	cingite	Ŭ	
State3	\odot	ctlExtValu	e		
State4	۲	0	0	10000	[wo]
State5	\odot	0	0	10000	[dig]
State6	\odot	< <<		>>>]

Example : dll control panel with 5 control variables

An example forfor the use of dll control panels is shown in the chapter <u>'Example</u> : RX/TX Automation with HW Output Synchronization'

10.6 DLL Create Panel

Purpose : create the skeletal structure of a dll project

With the dll create panel the h-file and the c-file for a dll project can be generated automatically.

- > All dll export functions are generated in the h-file
- All pointers for data access to the restbus simulation variables are defined and set correctly in the h-file
- The function bodies for the 3 central dll functions are generated in the c-file

Access the dll create panel

Create new dll project	:	23
Development Tool :	LCC Compiler	Settings
Create dll	Update .h	

- Create dll a new dll project is created. h-file and c-file, as well as the project file (.prj) if the LCC Compiler is chosen.
- Update.h just updates the h-file of an existing dll project. This will be necessary if the projects TX / RX simulation windows or dll control panel have been changed / modified after the creation of the dll project.

10.6.1 Settings for LCC Compiler

If the LCC Compiler is used, the complete dll-project is automatically generated by the CLDT SW.

Therefore some additional information about the LCC install folder and the LCC ini path are necessary :

Create new dll project		23
Development Tool :	LCC Compiler	Settings
Create dll	Update .h	
Install Folder . C: \L	CC\LCC-Win32\lcc\	Browse
ini Folder : C:\L	Isers\JW Electronics\Docur	Browse
		ОК

After the successful installation of the LCC-Win32 Compiler check the LCC main menu item

→project→configuration

Insert 'project table file path' & 'compiler installation directory path' information in the corresponding edit fields in the CLDT SW and confirm with OK.

10.7 DLL Load Panel

Purpose :

load and unload dll. Start and stop restbus simulation in dll mode

Access the dll load panel :

Main menu item →dll→load dll

DLL Sequence	2	23
File Inform	ation	
dll : T	estAll_Msvc.dll	load new
dll ok 🥥	Start 🤇	Stop
Reload Unload	Update Sim	

- **load new** loads an existing dll. If all dll export functions are found the green 'dll ok LED' appears.
- Start Start the restbus simulation in dll mode. RX/TX automation is generated by the dll.
- **Stop** Stop the restbus simulation in dll mode.

Update Sim Wdw If the check box is not set, the simulation RX/TX windows are not updated. If applications with increased timing requirements are running this check box should not be set

- Update List Fields If the check box is not set, the RX/TX simulation list fields are not updated. If applications with increased timing requirements are running this check box should not be set
- Unload / Reload If a dll shall be modified by the C-Compiler the recompilation will fail, if the dll is still loaded by the CLDT SW.
 → just unload the dll, re-compile the dll with the C-Compiler and then reload the dll.

11 Pre-defined TX Sequences

TX Sequence Functionality is integrated in the SW since Version A004.

With the TX Sequence Feature the user has the possibility to

- > pre define up to 2048 TX cycles with an accuracy of 1ms / cycle
- > combine up to 25 TX IDs within one TX Sequence
- > pre-define the CAN message contents for each TX cycle
- > synchronize 4 physical HW Outputs to each TX cycle
- to guarantee the accuracy of 1ms for the synchronization between the HW Outputs and the CAN Bus Messages, the
- TX Bus cycles and the HW output settings are pre-defined in a .seq-file and
- downloaded to the CLDT Flash memory before sequence start
- An Excel Template and Excel Macros can be used to automatically generate the correct .seq-file format
- Examples for the .seq-file generation via Excel are delivered with the installer for the CLDT Box and are available for download at <u>http://www.jwe-electronics.com/mp1/downloads.php</u>

11.1 .seq-file format description

Line 1 Line 37 :	ID Header
Line 38 max. Line 2091	TX Sequence data

11.1.1 ID Header

The ID Header contains

- ➤ the Project name
- the Can Bus Baudrate
- > Up to 25 different CAN Bus TX IDs that can be used for the TX cycles
- > the initialization values for the cyclic CAN messages
- > the initialization values for the 4 physical HW Outputs

In the following example 2 standard CAN messages are defined :

- one cyclic message with the ID 0x200, data length 4 and the initialization values 01 02 03 04 for byte0 ... byte3
- > one non cyclic message with the ID 0x100, data length 8
- > the physical Outputs 1 & 5 are initialized to '0' at sequence start
- > the physical Outputs 2 & 6 are initialized to '1' at sequence start
- the Baudrate is defined to 1 Mbit/s
- the project name is defined as TestSequence_2msg.seq

03	I	2015
----	---	------

au	irate	2	0	J												
NPW:	зg	ext <u>rt</u> ;	ID DL	CYC	сус	_tim	e		b0	b1	b2	b3	b4	b5	b6	b7
1	std	data	0x100	8	no	0		0	0	0	0	0	0	0	0	
2	std	data	0x200	4	yes	200		1	2	3	4	0	0	0	0	
3	ext	data	0xFFFFF	FFF	0	no	0		0	0	0	0	0	0	0	0
4		data	0xFFFFF		0	no	0		0	0	0	0	0	0	0	0
5		data	0xFFFFF		0	no	0		0	0	0	0	0	0	0	0
6		data	OxFFFFF		0	no	0		0	0	0	0	0	0	0	0
7		data	OxFFFFF	FFF	Ds ir	n ^{no} so	c <mark>ềnd</mark>	ling	ord	er	0	0	0	0	0	0
B		data	OxFFFFF					5			0	0	0	0	0	0
9		data	OxFFFFF		0	no	0		0	0	0	0	0	0	0	0
10		data	OxFFFFF		0	no	0		0	0	0	0	0	0	0	0
11		data	0xFFFFF		0	no	0		0	0	0	0	0	0	0	0
12		data	0xFFFFF		0	no	0		0	-	-	0	0	0	0	0
13 14		data data	0xFFFFF 0xFFFFF		0	no no	0		0	0	0	0	0	0	0	0
15		data data	OXFFFFF		0	no	0		0	0	0	0	0	0	0	0
6		data	OXFFFFF		0	no	0		0	0	0	0	0	0	0	0
7		data	OXFFFFF		õ	no	ō		õ	õ	õ	ō	õ	ō	ō	0
18		data	OxFFFFF		õ	no	õ		õ	õ	õ	ō	õ	õ	õ	0
19		data	OXFFFFF		õ	no	õ		õ	ō	õ	ō	õ	ō	õ	0
20		data	OxFFFFF		0	no	0		0	0	ō	0	ō	0	0	0
21		data	OxFFFFF		0	no	0		0	0	0	0	0	0	0	0
22	ext	data	0xFFFFF	FFF	0	no	0		0	0	0	0	0	0	0	0
23	ext	data	0xFFFFF	FFF	0	no	0		0	0	0	0	0	0	0	0
24	ext	data	OxFFFFF	FFF	0	no	0		0	0	0	0	0	0	0	0
4		data 🕈	0xFFFFF	FFF	0	no	0		0	0	0	0	0	0	0	0

Requested Lines :

Line 2 :	Project Name					
Line 4 :	Baudrate (1Mbit/s / ((n+1))	0 : 1Mbit/s	1:500 kBit/s		
Line 8 Line 32	CAN TX ID's in ascendi	ng order (ID1 < I	D2 < ID3)			
	NbMsg	number of mes	0			
	ext, std	message forma	t			
	rtr / data	Request or Data				
	ID	Message ID in h	nex format with	prefix 0x		
	DL	Data Length in	byte			
	yes / no	cyclic message	ightarrow yes, non cycl	ic message $ ightarrow$ no		
	0 65535 (ms)	cycle time if cyc	clic message			
	0 255	b0 b7 : initial	ization values fo	or cyclic messages		
Line 36	0, 1	HW Output 1, 2	2, 5, 6 initializatio	on values		

11.1.2 TX Sequence Data

The TX Sequence Data contains up to 2048 TX cycles

- > number of the CAN ID whose message content shall be changed
- 16 bit Δt value in ms : dt from cycle n to cycle n+1
- > 8 byte message content
- 1 byte physical HW Output Setting
- If only n (n < 2048) TX cycles are used, the values for the not used cycles (n+1 ... 2048) must be filled with 12 x 255 (see exemplary .seq-files)

In the following example the 2 CAN IDs from the ID Header above are used

- the non-cyclic CAN message shall be sent every 150 ms with the 8 byte content that is defined in the corresponding TX cycle
- the content of the cyclic CAN message shall be changed every 900ms by applying the 4 byte content defined in the corresponding TX cycle
- ▶ the output states shall be changed from $1001 \rightarrow 1000 \rightarrow 1100$

Downlo	ad Data										
NbMsg	dt_h	dt_1	b0	b1	b2	b3	b4	ь5	b6	b7	Op
1	0	150	1	222	4	5	6	4	5	6	5
1	0	150	0	222	4	5	6	4	5	6	5
1	0	150	2	222	4	5	6	4	5	6	5
1	0	150	0	222	4	5	6	4	5	6	5
1	0	150	3	222	4	5	6	4	5	6	5
1	0	150	0	222	4	5	6	4	5	6	5
2	0	10	1	2	3	4	0	0	0	0	5
1	0	140	0	222	2	5	3	4	5	8	5
1	0	150	4	222	2	5	3	4	5	8	5
1	0	150	0	222	2	5	3	4	5	8	5
1	0	150	5	222	2	5	3	4	5	8	5
1	0	150	0	222	2	5	3	4	5	8	5
1	0	150	6	222	2	5	3	4	5	8	5
2	0	10	2	3	4	5	0	0	0	0	5
1	0	140	7	222	4	5	6	4	5	6	1
1	0	150	0	222	4	5	6	4	5	6	3
1	0	150	8	222	4	5	6	4	5	6	3
1	0	150	0	222	4	5	6	4	5	6	3
1	0	150	9	222	4	5	6	4	5	6	3
1	0	150	0	222	4	5	6	4	5	6	3
2	0	10	3	4	5	6	0	0	0	0	3
1	0	140	0	222	2	5	3	4	5	8	3
1	0	150	4	222	2	5	3	4	5	8	3
1	0	150	0	222	2	5	3	4	5	8	3
1	0	150	5	222	2	5	3	4	5	8	3

Line 44 ... Line nMaximum 2048 lines (44 ... 2091) :1 line = 1 TX Sequence CycleLine n+1 ... Line 2091255255255255255255255255

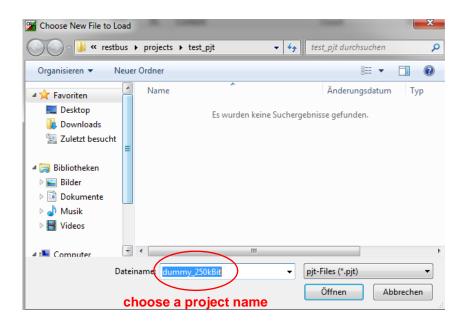
NbMs	5	number of message sent in next TX cycle
dt_h	0 255	Δt_h : High byte
dt_l	0 255	Δt _L : Low byte
		Δt_{ges} = (Δt_h * 255) + Δt_L : time difference to next TX cycle
b0	0 255	TX value for byte 0 for next TX cycle
b1	0 255	TX value for byte 1 for next TX cycle
b2	0 255	TX value for byte 2 for next TX cycle
b3	0 255	TX value for byte 3 for next TX cycle
b4	0 255	TX value for byte 4 for next TX cycle
b5	0 255	TX value for byte 5 for next TX cycle
b6	0 255	TX value for byte 6 for next TX cycle
b7	0 255	TX value for byte 7 for next TX cycle
Ор	0 15	HW Output values for next TX cycle
		bit0 : Output1, bit1 : Output2, bit2 : Output5, bit3 : Output6

www.jwe-electronics.com

11.2 Use of TX Sequences

Once the .seq-file is created, the TX Sequence can be applied by following the procedure below :

TX Sequence		×
File Information		
Load File Te Download	stSequence_2msg.seq	
Start	ic sequence e data	Stop


- ➢ Load the .seq-file
- > choose if the TX sequence shall be applied cyclically or just once
- > choose if the CAN data shall be saved in a file
- start the TX Sequence

12 Example : Can Trace

A new CAN Trace (without restbus simulation) shall be started. The trace shall monitor CAN bus data with a transfer rate of 250 kBit/s.

To start the new trace the following 3 steps must be performed :

1) Load a new project \rightarrow Restbus \rightarrow New Project

2) Set the Can Bus Baudrate in the Toolbar to 250 kBit/s

D

3) Start the CAN Trace with the Toolbar shortcut

If other ECUs or other CLDT Boxes are connected to the bus and are sending data with the correct baudrate of 250 kBit/s the CAN Bus data is displayed in the Trace Window and in the Scroll Window as shown below :

0x125 TX 103.351 0x126 TX 103.336	100 std 8817 std 20 std	d 1 d 2	00		
0x125 TX 103.351 0x126 TX 103.336		d 2		1034	
0x126 TX 103.336	20 std		00 00	2	
		d 3	00 a5 1 c	5168	
	40 std	d 4	00 00 00 00	2584	
0x127 TX 103.346	25 std	d 5	00 00 00 00 00	4134	
0x223 RX 103.362	20 std	d 1	f0	5170	
0x224 RX 103.327	50 std	d 2	00 00	2069	
0x225 RX 103.332	100 std	d 3	00 b8 0e	1035	
0x226 RX 103.337	100 std	d 4	00 00 00 00	1035	
0x1000ABCD TX 46.414	5632 ext	d 6	00 00 00 46 a4 00	3	
0x1000ABCE TX 103.232	200 ext	d 7	00 00 00 00 00 00 00	517	
0x1000ABCF TX 103.236	200 ext	d 8	00 00 00 00 00 00 00 00	517	
0x12001234 RX 103.342	100 ext	d 5	00 00 76 41 00	1035	
0x12001235 RX 103.347	20 ext	d 6	00 00 00 00 00 00	5170	
0x12001236 RX 103.343	31 ext	d 7	00 00 00 00 30 7e 0b	3446	

CAN Bus data Output in the Trace Window

Simulatio	on	Tr	ace Wdw		Scroll	Wdw Data Base Trigger
77.999	0x127	ΤХ	std	d	5	00 00 00 00 00
77.993	0x223	RX	std	d	1	fd
77.985	0x125	TX	std	d	3	00 ba 92
77.984	0x124	TX	std	d	2	00 00
77.974	0x127	ТΧ	std	d	5	00 00 00 00 00
77.973	0x223	RX	std	d	1	fd
77.969	0x126	TX	std	d	4	00 00 00 00
77,968	0x226	RX	std	d	4	00 00 00 00
77.964	0x125	ΤХ	std	d	3	00 ba 92
77,963	0x225	RX	std	d	3	00 46 43
77,959	0x124	TX	std	d	2	00 00
77.958	0x224	RX	std	d	2	00 00
77.954	0x123	TX	std	d	1	7b
77.953	0x223	RX	std	d	1	fd
77,949	0x127	TX	std	d	5	00 00 00 00 00
77,944	0x125	TX	std	d	3	00 ba 92
77.934	0x124	TX	std	d	2	00.00
77,933	0x223	RX	std	d	1	fd
77.929	0x126	TX	std	d	4	00 00 00 00
77.925	0x127	TX	std	d	5	00 00 00 00 00
77,924	0x125	TX	std	d	3	00 ba 92
77.913	0x223	RX	std	d	1	fd
77.909	0x124	TX	std	d	2	00.00
77,908	0x224	RX	std	d	2	00.00
77,904	0x125	TX	std	d	3	00 ba 92
77.899	0x127	ТХ	std	d	5	00 00 00 00
77.893	0x223	RX	std	d	1	fd
77,889	0x126	TX	std	d	4	00 00 00 00
77.885	0x125	TX	std	ď	3	00 ba 92
77.884	0x124	тх	std	d	2	00.00
77.874	0x127	TX	std	ď	5	00 00 00 00 00
77.873	0x223	RX	std	ď	1	fd
77.868	0x226	RX	std	ď	4	00 00 00
77,864	0x125	TX	std	ď	3	00 ba 92
77.863		RX	std	ď	3	00 46 43

CAN Bus data Output in the Scroll Window

13 Example : Can Restbus Simulation

A new Restbus Simulation Project with the following design parameters shall be developed :

		DL	Cycle [ms]
Project Name	MyProject		
CAN Bus Baudrate	250 kBit/s		
	0x223	1	20
	0x224	2	50
	0x225	3	100
CAN RX Messages	0x226	4	100
	0x12001234	5	100
	0x12001235	6	20
	0x12001236	7	30
	0x123	1	100
	0x124	2	0
	0x125	3	20
CAN TX Messages	0x126	4	40
CAN IN MESSages	0x127	5	25
	0x1000ABCD	6	0
	0x1000ABCE	7	200
	0x1000ABCF	8	200
Nbr Rx Windows	1		
Nbr Tx Windows	2		

In each of the RX & TX windows shall be placed 3 controls :

- ➔ One 16 bit int value
- → One 1 bit Flag value with check box symbol
- → One 1 bit Flag value with LED symbol

13.1 Step 1 : Load a new Project and choose the Baudrate

In the Main Menu choose \rightarrow Restbus \rightarrow New Project

Organisieren 🔻 🛛 N	euer Ordner			
🔆 Favoriten 📃 Desktop	Name	<u>^</u>		igsdatum Typ
Downloads		Es wurden keine S	uchergebnisse gefund	en.
📃 Zuletzt besucht	E			
词 Bibliotheken				
📔 Bilder				
Dokumente				
J Musik				
Videos				
💶 Computer				
	ateiname: MyProjec		 pjt-Files (*.pjt) 	

Set the Can Bus Baudrate in the Toolbar to 250 kBit/s

CAN Bus Baudrate :	250 kBit/s	$\overline{\mathbf{\cdot}}$

Save the basic project parameters : click the 'update-Button' in the CAN RX / TX Message Window

RX Msg	TX Msg
Add	Update

13.2 Step 2 : Edit the CAN RX and CAN TX IDs

First click on the TX Msg – register field and add all TX messages with their correct data length and cycle time settings

	RX Msg		тхі	Visg	
Ad	d 0x1000A	BCF		Upda	te
ext rtr	ID	DL		Cyde	Auto
	0x123	1	•	100	
	0x124	2	•	0	
	0x125	3	•	20	
	0x126	4	•	40	
	0x127	5	•	25	
V 📃	0x1000ABCD	6	•	0	
✓ 🔳	0x1000ABCE	7	•	200	
V 📃	0x1000ABCF	8	•	200	
Remo	ive				

- → Green color indicates a cyclic CAN message
- → Blue color indicates a manually triggered CAN message

Then click on the RX Msg – register field and add all RX messages with their correct data length and cycle time settings

RX Msg TX Msg								
Add 0x223 Update								
ext rtr I	D DI	L	Cycle					
0x22	3 1	•	20					
0x22	4 2	-	50					
0x22	5 3	•	100					
0x22	6 4	-	100					
🗸 🔲 🗠 12	001234 5	-	100					
🗸 🔲 🛛	001235 6	-	20					
🗸 🔳 🛛 🖂	001236 7	-	30					
Remove						Update	Update	

Finally save the CAN Message parameters to the project data with the 'update-Button'.

A 'red update-Button' indicates that the project must be updated before next simulation start.

13.3 Step 3 : Add one RX and two TX Windows each with 3 variables

In the Main Menu choose	\rightarrow Restbus \rightarrow Load RX Table
In the Main Menu choose	\rightarrow Restbus \rightarrow Load TX Table

Choose a unique name for each of the RX / TX Windows. The project disposes now of 3 empty simulation windows.

MyTxTable1.txt : TX	MyTxTable2.txt : TX	
Window Add	Window Add	
MyRxTable1.rxt : RX Window Add		

- → RX Windows are white colored
- → TX Windows are gray-colored

For each of the 3 windows add now 1 value control and 2 flag controls

 $\Rightarrow \text{Add} \Rightarrow \text{Value}$ $\Rightarrow \text{Add} \Rightarrow \text{Flag}$

MyTxTable2.txt : TX	
Window Add	
	User_set
User_set	wo 🔳
0 digit 0 wo	
	User_set
	wo 📃
MyTxTable1.txt : TX	
Window Add	Uses est
	User_set
User_set	wo 📄
0 digit 0 wo	
	User_set
	wo
MyRxTable1.rxt : RX	
Window Add	
	User_set
User_set	wo
0 digit 0 wo	User_set
	wo
C	

Save the new project configuration with the 'update-Button'.

RX Msg	TX Msg
Add	Update

13.4 Step 4 : Add the Properties for each of the controls

Open the Properties Dialog for each of the variables by a double mouse click on the right bottom corner of the flag control or value control

My_Valu	e			MyF	lag	
0	digit	0	wo	wo		
				_		

and define for each of them

- → the CAN message ID in which the variable is coded
- ➔ the Variable Name
- → Startbyte, Startbit & Datalength
- → the data format (Little Endian or Big Endian)
- ➔ the unit that shall be shown
- → for flag controls : if LED symbol is used or not
- → for value controls : if a calculated value (a, b) are used or not

Please refer to the chapters <u>CAN Message Format</u>, <u>Flag Properties</u> or <u>Value</u> <u>Properties</u> for a more detailed description of the above mentioned parameters.

Note : Currently no check is done if the data for bit positioning within a CAN message, inserted by the user, is coherent. The user is responsible by himself for correct message formats, correct data length and that no variable interferences appear.

In a future SW upgrade the implementation of an auto-check for correct CAN format is planned

Tip : Each time the CAN Message RX or TX IDs are modified, the **project must be updated** via the 'Update Button'. Only after an project update new CAN IDs are displayed in the Properties Windows.

In the given example some fictive data has been inserted in the properties windows of each control.

The result is one RX window and two TX windows, each with 3 controls :

one value

two flags, one check box and one LED.

MyTxTable2.txt : TX	
Window Add	
	MyTxFlag1
MyTxValue1	ON 📄
0 digit 0 wo	
	MyTxFlag2
	ON 🥥
MyTxTable1.txt : TX	
Window Add	
- Add	MyTxFlag3
MyTxValue2	
0 digit 0 wo	MyTxFlag4
	OFF
MyRxTable1.rxt : RX Window Add	
window Add	M.D.Flast
	MyRxFlag1
MyRxValue1	wo
0 digit 0 wo	M.D.Class2
	MyRxFlag2
	wo 🕥

13.5 Step 5 : Start the Restbus Simulation

Start the CAN Restbus Simulation with the Toolbar shortcut

If other ECUs or other CLDT Boxes are connected to the bus and are sending data with the correct baudrate of 250 kBit/s the CAN Bus data is now displayed in the Trace Window and in the Scroll Window as already described in the chapter <u>Example : CAN Trace</u>.

Additionally the RX Simulation and TX Simulation data is displayed in the Simulation Window as shown below :

Simulation	Trac	e Wdw	Scroll Wd	w	Data Base Trigger	
Rx Message	Time [s]	dt [ms]	ext/std	DL	Content	Remarks
0x223	58.102	20	std	1	f0	
0x224	58.077	50	std	2	00 00	
0x225	58.032	100	std	3	00 b8 0e	=
0x226	58.037	100	std	4	00 00 00 00	
0x12001234	58.042	100	ext	5	00 00 76 41 00	
0x12001235	58.107	20	ext	6	00 00 00 00 00 00	
0x12001236	58.102	30	ext	7	00 00 00 00 30 7e 0b	
•			"			Þ
Tx Message	Time [s]	dt [ms]	ext/std	DL	Content	Remarks
0x123	58.101	100	std	1	00	
0x124	45.807	8817	std	2	00 00	
0x125	58.111	20	std	3	00 a5 1c	
0x126	58.096	40	std	4	00 00 00 00	
0x127	58.121	24	std	5	00 00 00 00 00	
0x1000ABCD	46.414	5632	ext	6	00 00 00 46 a4 00	
0x1000ABCE	58.032	200	ext	7	00 00 00 00 00 00 00	
0x1000ABCF	58.036	200	ext	0	00 00 00 00 00 00 00 00	

The Simulation Window is updated approximately every 200ms, slightly depending on the real bus charge

13.6 Step 6 : Update RX Simulation Variables

The RX Simulation Windows with the defined RX Variables are updated approximately every 200ms with the data that is read in real time from the bus.

13.7 Step 7 : Update TX Simulation Variables

To change the values of a TX flag control a simple click on the check box symbol or on the LED symbol switches between its 2 states (true & false).

To change the value of a TX value control, open the Value - dialog by a **right mouse click** on the right bottom corner of the value, insert the new value and confirm with 'ENTER' or escape with 'ESC'.

My_Value	-				
0	digit	0	wo		
			•	-	right mouse click

Immediate update or update with mouse click on the rectangular LEDs

Depending on the 'Auto check box' in the CAN RX TX Messages window an update of the real bus TX values is done

→	Immediately if the	
_		

➔ user triggered if the

auto check box is set auto check box is not set

	RX Msg	Т	xı	Asg			
Ad	Add Ox1000ABCF Update						
ext rtr	ID	DI	-	Sycle	Auto	>	
	0x123	1	-	100			
	0x124	2	-	0			
	0x125	3	-	20			
	0x126	4	-	40			
	0x127	5	-	25			
V 🗆	0x1000ABCD	6	-	0			
\checkmark	0x1000ABCE	7	-	200			
\checkmark	0x1000ABCF	8	-	200			
Remo	ove						

Meaning of LED Colors :						
blue :	non-cyclic message :	message is updated				
green :	cyclic message :	message is updated				
orange :	non-cyclic message :	message not updated				
yellow :	cyclic message :	message not updated				
red :	cyclic message :	message suspended				
	→ suspend cyclic me mouse button on the	essages :click the right LED				
	\rightarrow re-allow cyclic mes mouse button on the	ssages : click the right LED again				

If the auto check box is not set and TX variable values are modified, the color of the cyclic messages changes from green to yellow, respectively from blue to orange for the non-cyclic messages

Yellow and orange colors indicate, that the CAN messages with the corresponding IDs have not been updated with their new values until now.

→ a simple mouse click on the yellow or orange button updates the corresponding TX message contents.

13.8 Step 8 : Hardware Output Usage

If the 4 HW signal Outputs shall be used please verify, that signal collisions as described in the chapter <u>'HW Outputs & CAN Bus Connection'</u> cannot appear.

To start a Restbus Simulation in HW Output Mode the 'Trigger Mode Active' check box must not be set when starting the simulation.

Otherwise the HW Outputs will be considered as HW Trigger Outputs (see chapter <u>'Trigger Mode'</u>)

To set the HW Outputs manually the TX Configuration Window must be loaded

 \rightarrow Restbus \rightarrow TX Configurations

At the bottom of the TX Configuration Window the 4 HW Outputs can be set manually at any time by setting or resetting the desired outputs and then applying a simple mouse click on the 'Set Button'.

Tx Configuration	Setup	23
		Output
Tx Cfg 1	Description Tx Configuration	
Tx Cfg 2	Description Tx Configuration	
Tx Cfg 3	Description Tx Configuration	
Tx Cfg 4	Description Tx Configuration	
Tx Cfg 5	Description Tx Configuration	
Tx Cfg 6	Description Tx Configuration	
Tx Cfg 7	Description Tx Configuration	
Tx Cfg 8	Description Tx Configuration	
Tx Cfg 9	Description Tx Configuration	
Tx Cfg 10	Description Tx Configuration	
Set Output		
Set	V Output 1 Output 5	
	Output 2 Output 6	

The following two TX Configurations shall be stored as Tx Cfg 1 and Tx Cfg 2. Additionally in

Tx Cfg 1 the HW Outputs 1 & 3 shall be set Tx Cfg 2 the HW Outputs 2 & 4 shall be set

Window Add	
	MyTxFlag1
MyTxValue1	ON 📄
253 digit 13 wo	
200 digit 10 Wo	MyTxFlag2
	ON 🙆
	· · · · · · · · · · · · · · · · · · ·
/vTxTable1.txt : TX	
MyTxTable1.txt : TX Window Add	
	MyTxFlag3
MyTxValue2	MyTxFlag3
Window Add MyTxValue2	MyTxFlag3

MyTxTable2.txt : TX					
Window Add					
	MyTxFlag1				
MyTxValue1	ON 🔽				
111 digit 17 wo					
ugit 17 wo	MyTxFlag2				
	ON 🕥				
MvTxTable1.txt : TX					
MyTxTable1.txt : TX					
MyTxTable1.txt : TX Window Add					
-	MyTxFlag3				
-	MyTxFlag3 ON				
Window Add					
MyTxValue2					
Window Add	ON 📄				

Config 1

Config 2

- set all values and flags as desired for configuration 1 and update the TX messages manually, if the Auto-update check box is not set.
- set the HW Outputs 1 & 3
- right mouse click the 'Tx Cfg 1' Button
- set all values and flags as desired for configuration 2 and update the TX messages manually, if the Auto-update check box is not set.
- set the HW Outputs 2 & 4
- ➢ right mouse click the 'Tx Cfg 2' Button

Tx Configuratio	n Setup	X
		Output 1 2 5 6
Tx Cfg 1	My_Config_1	
Tx Cfg 2	My_Config_2	

At any time, when the restbus simulation is running, the TX Configurations can be chosen by a simple mouse click on the corresponding Tx Cfg X Button :

Tx Configuration Setup					
		Output 1 2 5 6			
	My Config 1				
Tx Cfg 2	My Config 2				
Tx Cfg 3	Description Tx Configuration				
Tx Cfg 4	Description Tx Configuration				

Tx Configuratio	n Setup	23
		Output 1 2 5 6
Tx Cfg 1	My Config 1	
	My Config 2	
Tx Cfg 3	Description Tx Configuration	
Tx Cfg 4	Description Tx Configuration	

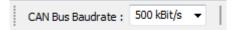
Tip : TX Configurations can only be stored correctly if the **Restbus Simulation is running** and if all TX bus messages are **already updated** with the new values !

14 Example : Can Data Base Trace

An example for a dbcj - Data Base is distributed with the Installation CD (see folder \dbc\00-MonitoringStations.dbcj)

- CAN Bus Baudrate : 500 kBit/s
- 20 different CAN messages, each with 4 signals

(about editing user specific dbcj-files see chapter Data Base Editor)


Start a CAN Data Base Trace

Main Menu	Item	Description
File	Import Data Base	Opens a new data base in the Data Base Window

The data base is displayed in a Message-Signal Tree-Structure :

Message IDs & Message Contents	DL	Type	SB	BL	Endian	Value	Unit	Bus Value	Time	TX ECU	RX ECU
0x120 MonitoringStation_11	8	std						00 00 00 00 00 00 00 00	0.000	MONITOR_1	
0x121 MonitoringStation_12	8	std						00 00 00 00 00 00 00 00	0.000	MONITOR_2	
0x122 MonitoringStation_13	8	std						00 00 00 00 00 00 00 00	0.000	MONITOR_3	
0x123 MonitoringStation_14	8	std						00 00 00 00 00 00 00 00	0.000	MONITOR_4	
- 0x124 MonitoringStation_15	8	std						00 00 00 00 00 00 00 00	0.000	MONITOR_5	
0x130 MonitoringStation_21	8	std						00 00 00 00 00 00 00 00	0.000	MONITOR_6	
0x131 MonitoringStation_22	8	std						00 00 00 00 00 00 00 00	0.000	MONITOR_7	
0x132 MonitoringStation_23	8	std						00 00 00 00 00 00 00 00	0.000	MONITOR_8	
0x133 MonitoringStation_24	8	std						00 00 00 00 00 00 00 00	0.000	MONITOR_9	
0x134 MonitoringStation_45	8	std						00 00 00 00 00 00 00 00	0.000	MONITOR_20	
0x140 MonitoringStation_25	8	std						00 00 00 00 00 00 00 00	0.000	MONITOR_10	
0x141 MonitoringStation_31	8	std						00 00 00 00 00 00 00 00	0.000	MONITOR_11	
0x142 MonitoringStation_32	8	std						00 00 00 00 00 00 00 00	0.000	MONITOR_12	
0x143 MonitoringStation_33	8	std						00 00 00 00 00 00 00 00	0.000	MONITOR_13	
0x144 MonitoringStation_34	8	std						00 00 00 00 00 00 00 00	0.000	MONITOR_14	
- 0x150 MonitoringStation_35	8	std						00 00 00 00 00 00 00 00	0.000	MONITOR_15	
0x151 MonitoringStation_41	8	std						00 00 00 00 00 00 00 00	0.000	MONITOR_16	
0x152 MonitoringStation_42	8	std						00 00 00 00 00 00 00 00	0.000	MONITOR_17	
0x153 MonitoringStation_43	8	std						00 00 00 00 00 00 00 00	0.000	MONITOR_18	
0x154 MonitoringStation_44	8	std						00 00 00 00 00 00 00 00	0.000	MONITOR 19	

 \rightarrow Verify the correct Can Bus Baudrate in the Toolbar

→ Store CAN Data (optional)

If the trace data shall be stored set the 'Save Data check box' in the Toolbar

→ Start a new CAN Trace

If the CAN IDs defined in the dbc-file appear on the bus, the messages & signal contents are displayed in the Data Base Window.

Content update is done every 200ms approximately.

Simulation Trace	Wdw		Scr	oll Wd	lw	Data Bas	e	Trigger				
Message IDs & Message Contents	DL	Туре	SB	BL	Endian	Value	Unit	Bus Value	Time	TX ECU	RX ECU	
0x120 MonitoringStation_11	8	std						68 01 9f 01 4b 00 5f 00	68.918	MONITOR_1		
InsideTemperature			0	10	LE	18.06	degree	360			CENTRAL_ECU	
OutsideTemperature			16	10	LE	26.94	degree	415			CENTRAL_ECU	
AirHumidity			32	8	LE	75.00	%	75			CENTRAL_ECU	
AtmosphericPressure			48	8	LE	970.0	hPa	95			CENTRAL_ECU	
0x121 MonitoringStation_12	8	std						18 01 5e 01 3f 00 6e 00	68.893	MONITOR_2		
InsideTemperature			0	10	LE	5.161	degree	280			CENTRAL_ECU	
OutsideTemperature			16	10	LE	16.45	degree	350			CENTRAL_ECU	
AirHumidity			32	8	LE	63.00	%	63			CENTRAL_ECU	
AtmosphericPressure			48	8	LE	985.0	hPa	110			CENTRAL_ECU	
0x122 MonitoringStation_13	8	std						22 01 90 01 43 00 69 00	68.898	MONITOR_3		
0x123 MonitoringStation_14	8	std						24 01 93 01 47 00 6e 00	68.883	MONITOR_4		
InsideTemperature			0	10	LE	7.097	degree	292			CENTRAL_ECU	
OutsideTemperature			16	10	LE	25.00	degree	403			CENTRAL_ECU	
AirHumidity			32	8	LE	71.00	%	71			CENTRAL_ECU	
AtmosphericPressure			48	8	LE	985.0	hPa	110			CENTRAL_ECU	
0x124 MonitoringStation_15	8	std						b8 01 bd 01 5b 00 58 00	68.938	MONITOR_5		
0x130 MonitoringStation_21	8	std						d2 01 f4 01 56 00 4b 00	68.943	MONITOR_6		
0x131 MonitoringStation_22	8	std						d6 01 c2 01 37 00 46 00	68.918	MONITOR_7		
0x132 MonitoringStation_23	8	std						77 01 a7 01 30 00 aa 00	68.923	MONITOR_8		
InsideTemperature			0	10	LE	20.48	degree	375			CENTRAL_ECU	
OutsideTemperature			16	10	LE	28.23	degree	423			CENTRAL_ECU	
AirHumidity			32	8	LE	48.00	%	48			CENTRAL_ECU	
AtmosphericPressure			48	8	LE	1045	hPa	170			CENTRAL_ECU	
0.400 MALINI CALLIN ON	0	14.1						00 00 00 00 00 00 00 00	60 000	MONITOR O		

15 Example : Trigger Output Usage

If the HW Trigger Outputs are used, signal collisions as described in the chapter <u>'HW Outputs & CAN Bus Connection'</u> must not appear !

In the following example the message mapping from the dbcj-file in the chapter <u>'Example : CAN Data Base Trace'</u> is used.

Message IDs & Message Contents	DL	Туре	SB	BL	Endian	Value	Unit	Bus Value
- 0x120 MonitoringStation_11	8	std						00 00 00 00 00 00 00 00 00
InsideTemperature			0	10	LE	0	degree	0
OutsideTemperature			16	10	LE	0	degree	0
AirHumidity			32	8	LE	0	%	0
AtmosphericPressure			48	8	LE	0	hPa	0
0x121 MonitoringStation_12	8	std						00 00 00 00 00 00 00 00 00
InsideTemperature			0	10	LE	0	degree	0
OutsideTemperature			16	10	LE	0	degree	0
AirHumidity			32	8	LE	0	%	0
AtmosphericPressure			48	8	LE	0	hPa	0
0x122 MonitoringStation_13	8	std						00 00 00 00 00 00 00 00 00
• 0x123 MonitoringStation_14	8	std						00 00 00 00 00 00 00 00 00
0x124 MonitoringStation_15	8	std						00 00 00 00 00 00 00 00 00
0x130 MonitoringStation_21	8	std						00 00 00 00 00 00 00 00 00
0x131 MonitoringStation_22	8	std						00 00 00 00 00 00 00 00 00

Each monitoring station message consists of 4 signals

Signal	Startbyte	Startbit	Bitlength	Format
Inside Temperature	0	0	10	LE
Outside Temperature	2	0	10	LE
Air Humidity	4	0	8	LE
Atmospheric Pressure	6	0	8	LE

Correlation between the bus value and the 'real world' value :

Signal	Bus Value [digit]	а	b	Calc Value	unit
Inside Temperature	Х	0.16129	-40	0.16129 * x - 40	degree
Outside Temperature	х	0.16129	-40	0.16129 * x - 40	degree
Air Humidity	x	1	0	х	%
Atmospheric Pressure	х	1	875	x + 875	hPa

Trigger Request

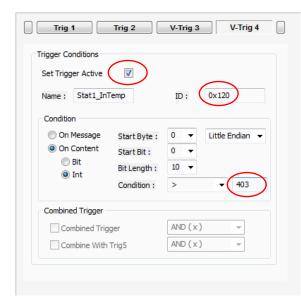
In the following example the trigger TRIG1 shall be a **logical AND combination** of all other triggers V-Trig4, V-Trig3, Trig5, Trig2 and Trig1.

- Virtual Trigger V-Trig4 is used to create a combined trigger condition for V-Trig3
- Virtual Trigger V-Trig3 is a logical combination of the trigger conditions V-Trig4 and V-Trig3 and is used to create a combined trigger condition for Trig2
- Trig2 is a logical combination of the trigger conditions V-Trig4, V-Trig3 and Trig2

Trig2 can be monitored on HW Output 2 and is furthermore used to create a combined trigger condition for Trig1

- Trig5 can be monitored on HW Output 3 and is furthermore used to create a combined trigger condition for Trig1
- Trig1 is a logical combination of the trigger conditions V-Trig4, V-Trig3, Trig2, Trig5 & Trig1.

Trig1 can be monitored on HW Output 1.


The following Trigger Table shall be realized :

Trigger	Message	Condition1	Condition2
V-Trig4	0x120	On Content	InsideTemp > 25°C
V-Trig3	0x120	On Content	OutsideTemp > 35°C
Trig2	0x120	On Content	Humidity > 80%
Trig5	0x121	On Content	OutsideTemp < 32°
Trig1	0x121	On Content	Pressure < 1000 hPa

15.1 Step 1 : Define the different Triggers in the Trigger Window

V-Trig4 condition : Inside Temperature at Monitoring Station 11 > 25°C

 $25^{\circ}C \rightarrow (25 + 40) / 0.16129 = 403 \text{ digit}$

V-Trig3 condition :

Outside Temperature at Monitoring Station 11 > 35°C

 $35^{\circ}C \rightarrow 465 \text{ digit}$

Set Trigger Active	tTemp	ID :	0x120
	er en p	10.	UNILU
Condition		_	
On Message	Start Byte :	2 🔻	Little Endian 👻
On Content On Bit	Start Bit :	0 -	
 Int 	Bit Length :	10 👻	
0	Condition :	>	◄ 465
Combined Trigger			
Combined Trig	ner (AND (x)	-

Trig2 condition :

Air Humidity at Monitoring Station 11 > 80%

80% → 80 digit

rigger Conditions Set Trigger Active (
Name : Stat1_Hun	hidity	ID:	0x120
Condition			
On Message	Start Byte :	4 🔻	Little Endian 👻
On Content	Start Bit :	0 👻	
 Bit Int 	Bit Length :	8 🔻	
• Inc	Condition :	>	▼ 80
Combined Trigger			
Corrbined Trigg	ler 🕻	AND (x)	-
Combine With 1	rig5	AND (x)	-

Trig5 condition :

Outside Temperature at Monitoring Station 12 > 32°C

$32^{\circ}C \rightarrow 446 \text{ digit}$

-		\frown
Ψ	ID:	0x121
art Byte :	2 👻	Little Endian 👻
art Bit :	0 💌	
t Length :	10 🔻	
ondition :	<	▼ 446
	AND (x	:) 👻
5	AND (x	:) 🔻
	art Bit : : Length : ondition :	art Bit : 0 • t Length : 10 • andition : <

Trig1	condition	:

Atm. Pressure at Monitoring Station 12 < 1000 hPa

1000 hPa → 125 digit

Trig 1	Trig 2	V-Trig 3	V-Trig 4
Trigger Conditions Set Trigger Active			
Name : Stat2_Pre	ssure	ID :	0x121
 On Message On Content Bit Int 	Start Byte : Start Bit : Bit Length :	6 ▼ 0 ▼ 8 ▼	Little Endian 👻
Combined Trigger	· (< AND (x) AND (x)	

- > set the triggers 'Active'
- > Save the Trigger Configuration \rightarrow Trigger \rightarrow Save Configuration

15.2 Step 2 : Download the trigger configuration to the CLDT Box

> Trigger download is done via the Menu Item \rightarrow Trigger \rightarrow Download

Ł

or via the Toolbar shortcut

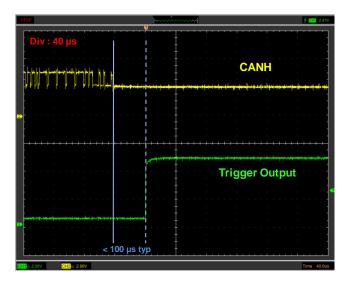
The 'Trigger Download successful' Message Box should be displayed. If an error or error code is displayed please save the configuration again and restart the trigger download.

CAN-Oszi-2008	2	23
Trigger Download succe	essful !!	
	ОК	

15.3 Step 3 : Activate the Trigger Mode and start the CAN Trace

To start a CAN Trace or a CAN Restbus Simulation in Trigger Mode the 'Trigger Mode Active' check box must be set **before** starting the trace or the simulation.

Otherwise the HW Outputs will be considered as HW Signal Outputs (see chapter <u>'HW Output Usage'</u>)



15.4 Step 4 : Monitor the Trigger Outputs with a monitoring tool

Several monitoring or signal generating tools can be used to supervise the trigger output signals. A block diagram of the physical HW Outputs is shown in the chapter <u>'Output Signal Monitoring'</u>.

Trigger Condition	triggered HW Output
Trig1 = true	Output 1 : logic high level or positive pulse
Trig2 = true	Output 2 : logic high level or positive pulse
Trig5 = true	Output 3 : logic high level or positive pulse
Trig6 = true	Output 4 : logic high level or positive pulse

Depending on <u>the particular trigger conditions</u> a logic high level or a pulse is generated at the corresponding trigger outputs.

oscilloscope as monitoring tool for trigger Output 1

www.jwe-electronics.com

16 Example : RX / TX Automation with HW Output Synchronization

All CLDT project files and all dll projects (including source codes) for the following examples are available in the CLDT Box installation folder under

...\examples\RxTxAutomation\...

Use of C Compilers

If any C-Compiler other than the LCC-Win32 Compiler or the MSVC++ Compiler shall be used, please refer to the source code of the delivered h-files and c-files (see example_16_x.zip) in order to implement correctly all dll export functions.

Note that the correct pointer setting for the shared Rx & Tx variables is done by the CLDT SW when creating or updating a dll project.

- → create a dummy project for the MSVC++ or LCC Compiler
- → derive your own h-file and c-file by using the pointer settings defined in the h-file of the dummy project

16.1 Use LCC-Win32 Compiler for dll restbus simulation

The CLDT project file for this example, as well as an example for a user specific restbus application are available in the CLDT Box installation folder under

...\examples\RxTxAutomation\example_16_1.zip

16.1.1 Create a new dll project, compile it and load it with the CLDT SW

- 1) Ensure that the LCC-Win32 Compiler is correctly installed and that the <u>LCC</u> <u>Compiler Settings for the CLDT SW</u> are correct
- 2) Close the LCC Compiler (if it was open)
- 3) Start the CLDT SW and open the project *example_16_1.pjt*
- 4) Open the dll create panel (\rightarrow dll \rightarrow create dll project)
- 5) Check the LCC Compiler Settings (see 1))
- 6) Click 'Create dll' and choose a project name
- 7) Click 'OK' on the success MessageBox
- 8) The LCC Compiler should be opened automatically and the created dll project should appear. If the LCC Compiler is not opened automatically or if the new dll project is not displayed, the project must be chosen manually (see below).
- 9) Compile the dll (LCC menu item \rightarrow Compiler \rightarrow Rebuild All)
- 10) Confirm with 'OK' or 'yes'
- 11) The dll will be created in the dll projects subfolder \lcc\...
- 12) Close the dll create panel in the CLDT SW
- 13) Open the dll load panel (\rightarrow dll \rightarrow load dll)
- 14) Choose 'load new' and select the created dll in the dll projects subfolder \lcc\...

15) The green 'dll ok LED' should appear

The new dll is now loaded and the restbus simulation could be started. However the user logic should be programmed by the user before ...

Choose the dll project manually in the LCC Compiler

- 1) Start the LCC Compiler
- 2) Close the current project, if one is open (\rightarrow Project \rightarrow close)
- 3) Import the desired project (\rightarrow Project \rightarrow import)
- 4) Set the files drop down list on the bottom right corner to 'Project Files'
- 5) Select the desired dll project .prj

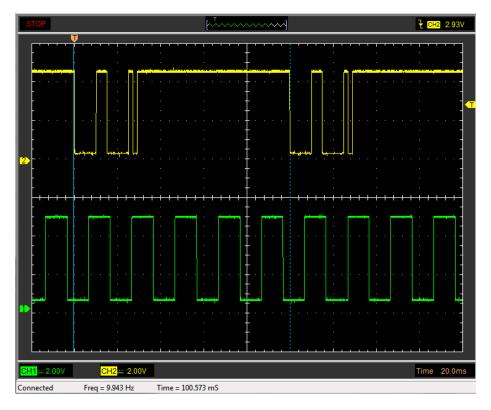
16.1.2 Program the user logic for the restbus simulation

The three central functions	OnSimulationStart()
	RxTxLogic(i64DeltaT)
	OnSimulationStop()

may now be programmed by the user.

The integer function parameter *i64DeltaT* contains the elapsed time in [ns] since the last dll call. Therefore exact timings (as far as possible under Windows operating systems) can be created.

Have a closer look at the h-file and c-file which are delivered with this example. They show, how the RX & TX simulation values are used inside the dll, how the 4 physical HW Outputs can be controlled and how a simple sub-operating system can be implemented with the dll. 16.1.3 Testing ... \example_16_1\ ...


- 1) Create the folder C:\temp\debug\ to store debug informations
- 2) Start the CLDT SW and load the project

...\example_16_1\CLDT_pjt\example_16_1.pjt

3) Open the dll load panel and load the dll

...\example_16_1\LCC_pjt\example_16_1\Lcc\example_16_1.dll

- Connect the CLDT Box and a 2nd ECU (or 2nd CLDT Box) with 500 kBit/s to the CAN Bus
- 5) Set the check boxes 'Update Sim Windows' and 'Update List Fields' on the dll load panel
- Start the Restbus Simulation and use the dll control panel to start / stop CAN Bus communication

HW Output Curve Generation : Output 2 & Output 6 for example_16_1

16.2 Use Microchip VC++ Compiler for dll restbus simulation

The CLDT project file for this example, as well as an example for a user specific restbus application are available in the CLDT Box installation folder under

...\examples\RxTxAutomation\example_16_2.zip

16.2.1 Create an empty dll project with VC++ Compiler

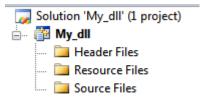
- 1) Open Microchip VC++ Compiler, choose → File → New → Project
- 2) Select 'Win32 Project' choose the project folder & project name & click 'OK'

Project types:		Templates:		.NET Framework 3.5	-
Visual C++ ATL CLR General MFC Smart Devi Test Win32 Other Languag Other Project 1 Test Projects		Visual Studio installed templates Win32 Console Application My Templates	Win32 Projec	đ	
A project for creat	ng a Win32 application,	console application, DLL, or static libr	ary		
Name:	My_dll				
Location:	C:\Temp\Test_dll			-	Browse
Solution:	Create new Solution	•	Create directory for so	olution	
Solution Name:	My_dll				
				ОК	Cancel

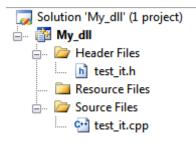
3) Click 'Next', choose DLL and 'empty project' & click 'Finish'

Applica	ation Settings	
Overview Application Settings	Application type:	Add common header files for:
	< Previous	Next > Finish Cancel

16.2.2 Create h-file & cpp-file with CLDT SW


- 4) Start the CLDT SW and open the project *example_16_2.pjt*
- 5) Open the dll create panel (\rightarrow dll \rightarrow create dll project)
- 6) Choose the MSVC++ Compiler, click 'Create dll'

Development Tool :	MS VC++ 🔻	Settings
Create dll	Update .h	


 Choose the VC++ project folder (see 2)) and choose a name for the dll's hfile and cpp-file

The cpp-file & h-file are created in the VC++ project folder

16.2.3 Add h-file and cpp-file to VC++ dll Project

- In the VC++ Solution Explorer right click Header Files → Add → Existing Item and choose the h-file
- In the solution Explorer right click Source Files → Add → Existing Item and choose the cpp-file

16.2.4 Compile and load dll with CLDT SW

- 10) Set VC++ build option to 'Release Built' and choose \rightarrow Build \rightarrow Build Solution
- 11) The dll is compiled successfully and stored in the project folder ...\Release\
- 12) Close the dll create panel in the CLDT SW
- 13) Open the dll load panel (\rightarrow dll \rightarrow load dll)
- 14) Choose 'load new' and select the created dll in the project folder\Release\
- 15) The green 'dll ok LED' should appear

The new dll is now loaded and the restbus simulation could be started. However the user logic should be programmed by the user before ...

16.2.5 Program the user logic for the restbus simulation

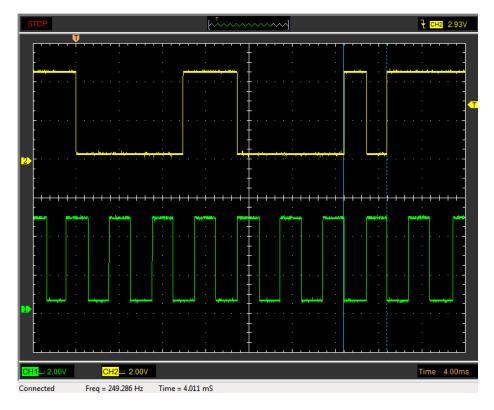
The three central functions	OnSimulationStart()
	RxTxLogic(i64DeltaT)
	OnSimulationStop()

may now be programmed by the user.

The integer function parameter *i64DeltaT* contains the elapsed time in [ns] since the last dll call. Therefore exact timings (as far as possible under Windows operating systems) can be created.

Have a closer look at the h-file and cpp-file which are delivered with this example. They show, how the RX & TX simulation values are used inside the dll, how the 4 physical HW Outputs can be controlled and how a simple sub-operating system can be implemented with the dll.

16.2.6 Testing ... \example_16_2\ ...


- 1) Create the folder C:\temp\debug\ to store debug informations
- 2) Start the CLDT SW and load the project

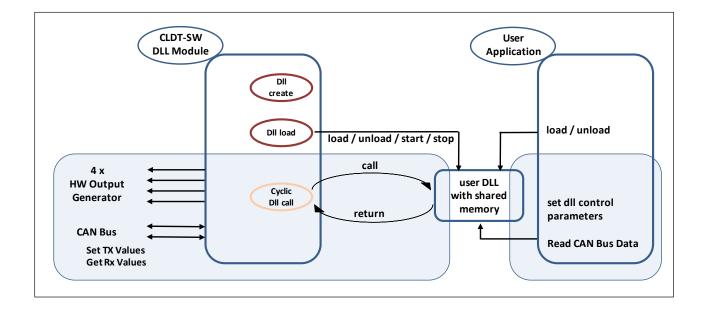
...\example_16_2\CLDT_pjt\example_16_2.pjt

3) Open the dll load panel and load the dll

...\example_16_2\MSVCdll_pjt\example_16_2\Release\example_16_2.dll

- Connect the CLDT Box and a 2nd ECU (or 2nd CLDT Box) with 500 kBit/s to the CAN Bus
- 5) Set the check boxes 'Update Sim Windows' and 'Update List Fields' on the dll load panel
- Start the Restbus Simulation and use the dll control panel to start / stop CAN Bus communication

HW Output Curve Generation : Output 1 & Output 6 for example_16_2


16.3 Use Microchip VC++ Compiler to create an external dll Control Panel

The CLDT project file for this example, as well as the VC++ dll project and the VC++ User Application are available in the CLDT Box installation folder under

...\examples\RxTxAutomation\example_16_3.zip

16.3.1 Simple way of data exchange with external application

In this example the dll control shall not be realized by the dll control panel (which is integrated in the CLDT SW), but by an external application. Additionally the external application should monitor some RX or TX data from the CLDT application.

- > the dll must be created in the same way as described in the last chapter
- the export functions for the communication with the user application must be added to the dll
- > data space that is shared between all applications must be declared in the dll
- the user application must be realized

Have a closer look at the dll project and the user application project. Both projects were generated with the VC++ Compiler. These two projects demonstrate how an external application can control the dll program flow and how it can access data from the CLDT Application.

16.3.2 Testing ... \example_16_3\ ...

- 1) Create the folder C:\temp\debug\ to store debug informations
- 2) Start the CLDT SW and load the project

...\example_16_3\CLDT_pjt\example_16_3.pjt

3) Open the dll load panel and load the dll

...\example_16_3\MSVCdll_pjt\example_16_3\Release\example_16_3.dll

- Connect the CLDT Box and a 2nd ECU (or 2nd CLDT Box) with 500 kBit/s to the CAN Bus
- 5) Set the check boxes 'Update Sim Windows' and 'Update List Fields' on the dll load panel
- 6) Start the user application

...\example_16_3\DIIControl_userApp\Release\DIIControl_userApp.exe

- 7) Load the same dll as under 3)
- Start the Restbus Simulation and use the user application to start / stop CAN Bus communication

Simulation	Trac	e Wdw	Scroll We	lw	Data Base	Trigger					RX Msg	TX Msg	
Rx Message	Time [s]	dt [ms]		DL	Content			Rema	ks	<u> </u>	Add	Update	User Application
0x220	0	0	std	4	00 00 00 00						Ruu		
0x221	0	0 [OLL Sequence		8	Rx1.rxt : RX						Auto	to control
0x222	0	0				Window Add						Cycle	Restbus Simulation
)x223	0	0	File Information	n		i0x220 8bit		i0x224 3bit	i0x225 16bit		i0x229 3bit	- 100	Resibus Simulati
0x224	0	0		1 10 0		_10.220_0010		Dutter 1 G					
0x225	0	0	dl : exam	pre_16_3.	di load new p	0 digit	0 °C		0 digit	0 wo	Button_1	50	🔒 DIIControl
0x226	0	0						Button_2 (Button_2 🔘		Dicontrol
0x227	0	0	dliok 🕥 🥤	Start	Stop	_i0x221_8bit		Button_3 🔘	_i0x226_16bit		Button_3 🔘	50 🗖	state physical Outputs
0x228	0	0				0 0.0	100 [9	6] Button_4 🔘	0 0	65535 [wo]	Button_4 🔘	✓ 50 ○ ✓ 0 ○	
0x229	0	0	Reload	Update	Sim Windows	0		Button 5	0 0	65535 [dig]	Button 5	20	Output 1:
			Unload	✓ Update	List Fields	0 0	250 [d	g] Button 6		00000 [0]	Button 6		Output 2: 0
		U]	b0x222 1bit	b0x223 1bit		_b0x227_1bit	_b0x228_1bit	_	- 100	Output 5 : 1
•								Button_7 C		ON O	Button_7 🔘		
Tx Message	Time [s]	dt [ms]		DL	Content	ON 🥥	ON 🥥	Button_8		U U	Button_8 🔘		Output 6 : 1
0x120	139.433	100	std	8	86 00 00 00 00 00 00 00 0								state Variables
0x120	139.441	2	std	7	cc 00 00 00 00 00 00 00 00	TX1.txt : TX				1.11.1.0.0	move		
0x121	139,393	50	std	6	e7 07 00 00 00 00 00								0x126_18bit: 13516
0x123	139,439	10	std	5	06 00 00 00 00 00	Window Add					1		
0x124	139.402	50	std	4	01 00 00 00 00	_i0x120_8bit		_i0x123_3bit	_i0x125_17bit		_i0x128_3bit		Output Control
0x125	139.350	100	std	4	47 05 00 00	134 digit	134 wo	State1 @	1351 digi	t 1351 wo	State1 🔘		Allow Suspend
0x126	139,442	20	std	5	cc 34 00 00 00	and the surger		State2 🤅			State2 🔘		
0x120	138,450	1001	std	6	3e 00 00 00 00 00 00	i0x121 8bit		State3 (i0x126 18bit		State3 🔘		
0x128	139,372	1001	std	7	06 00 00 00 00 00 00 00	0 102.0	125 [9			16 262143 [wo]	State4		
0x129	138,451	1001	std	8	00 00 00 00 00 00 00 00 0	102.0	250 [di						
			200					Jakes			State5 🔘		
							> >> >	State6 🤅		>>>>	State6 🔘		
						i0x122 16bit		State7 @	i0x127 8bit		State7 💿		
٠						0 262.99	9 6000 [rp	State8 🤅	0 6	2 255 [wo]	State8 🔘		
						262.99	9 0000 [rp			2 255 [WO]			
RX TX Simulation Seque	nce is running					0 2023	46154 [di	_b0x124_1bit	0 6	2 255 [diq]	_b0x129_1bit		
							-	a) wo 🕥		- J4	wo 🥥		

17 Example : TX Sequence Generation with Excel Makro

The Excel file 'TxSequenceMacros_V01.xls' with the 2 Makros 'CreateTxSequence1' & 'CreateTxSequence2', as well as the generated .seqfiles are available in the CLDT Box installation folder under

...\examples\TxSequence\example_17.zip

17.1 TX Sequence Header ID and TX Sequence Data

The Header ID data (see chapter <u>*'.seq-file format description*</u>) for the 2 TX sequences is defined in the Excel sheets 'TX_IDs1' & 'TX_IDs2'.

The Sequence Data for the 2 TX sequences is defined in the Excel sheets 'TX_Sequence1' & 'TX_Sequence2'.

A click on the 'Create TxSequence X' command button creates the corresponding .seq-file in the folder c:\\temp\

The Macros should demonstrate how Excel can be used to easily create a correctly formatted .seq-file.

18 CLDT Box : Software Description LIN Bus Support

Planned LIN Support :

Q2 / 2015

- Master Mode
- > Slave Mode
- ➢ Trace Mode

Chapter under Revision

19 Future Software Scope

Chapter under Revision

19.1 CAN – LIN Gateway Functionality

Chapter under Revision

20 Technical Specification

20.1 ABSOLUTE MAXIMUM RATINGS

	SubD 9 female Connector	min	max
Temperature range		- 20°C	+ 85°C
	CANH	- 27V	+ 40V
	CANL	- 27V	+ 40V
Voltage range	LIN	- 18V	+ 40V
	Single Wire CAN	- 20V	+ 40V
	HW Output 1 4 (external Voltage !)	0V	+ 5V
	CAN Receiver	-	20 mA
Output Curront	LIN : Ibus Short Circuit Current Limit	-	200 mA
Output Current	Single Wire CAN : Ibus Short Circuit Current Limit	-	350 mA
	HW Output 1 4	-	5 mA

20.2 NORMAL OPERATION RATINGS

SubD 9 fem	SubD 9 female Connector & USB Connector			max
Supply Voltage	by PC USB Port		+5V	
Supply current				200 mA
	Input Capacitor		10 nF	
	Output High Level		5 V	
Output 1 1	Output High Resistance		1 kΩ	
Output 1 4	High Level Output Current			5 mA
	Output Low Level	0.3V	0.6V	1 V
	Input Low Level Current			4 mA
GND line fuse				200 mA

21 Change History

Version	Date	Changes
V1.0	28.09.2014	First Preliminary Release
V1.1	15.12.2014	Chapter 8.9 : New RX & TX Controls added Chapter 10.2 : Meaning of green & red update button Chapter 10.7 : Meaning of LED colors New function : Suspend CAN message : Red LED
V1.2	10.03.2015	Chapter 3 : change from BETA state to Pre-Release state Chapter 5.4.1 : correct setting of latency time-out added Chapter 9 : Scope Functionality added Chapter 10 : RX / TX Automation added Chapter 11 : TX Sequence added Chapter 16 : Example RX/TX Automation added Chapter 17 : Example TX Sequence added

22 Environmental Aspects

The following symbol indicates that this product complies with the European Union requirements according to Directives 2002/96/EC on Waste Electrical and Electronic Equipment (WEEE).

22.1 Product End Of Life

The equipment may contain materials or substances that could cause damage to the environment or human health. In order to avoid release of such substances into the environment this product should be recycled in an appropriate system to ensure that parts of the materials are reused or recycled in an appropriate way.

23 EC Declaration Of Conformity

CE

EG - Konformitätserklärung / EC – Declaration of Conformity

Firma / Company

JW Electronics Hauptstrasse 43 D – 78601 Mahlstetten

Hiermit erklären wir, dass die Produkte We herewith declare, that the products CLDT1004, CLDT1014, CLDT0114, CLDT0014 CLDT0104

Bezeichnung der Produkte : Product Description : CAN & LIN Development Tool

mit den folgenden EG-Rats-Richtlinien übereinstimmen : are in conformity with the following European Directives :

2004/108/EC (EMC)

Angewandte harmonisierte Normen : Applicable Harmonized Standards : EN 61326-1:2006 EN 61000-6-1:2007 EN 61000-6-3:2007 +A1:2011

Mahlstetten, 26.Juli 2014

Jürgen Walter Geschäftsinhaber

© by JW Electronics http://www.jwe-electronics.com

www.jwe-electronics.com